串联催化体系制备长链支化聚乙烯

卢令攀 吴佳骏 王凯悌

引用本文: 卢令攀, 吴佳骏, 王凯悌. 串联催化体系制备长链支化聚乙烯[J]. 应用化学, 2021, 38(1): 69-76. doi: 10.19894/j.issn.1000-0518.200170 shu
Citation:  LU Ling-Pan,  WU Jia-Jun,  WANG Kai-Ti. Preparation of Long-Chain Branched Polyethylene Catalyzed by Tandem Catalytic System[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 69-76. doi: 10.19894/j.issn.1000-0518.200170 shu

串联催化体系制备长链支化聚乙烯

    通讯作者: 王凯悌,E-mail:ktwang@cqut.edu.cn
  • 基金项目:

    国家自然科学基金(No.21801033)和重庆市高校创新研究群体(No.CXQT19027)项目资助

摘要: 利用两种串联催化体系,Cat.I/Cat.II和Cat.I/Cat.III{Cat.I:[ArNCH-C8H3(CH22(C6H5) O]2ZrBn2;Cat.II:(η5-C5Me4) Si (Me)2NtBuTiCl2;Cat.III:tans-Et (Ind)2ZrCl2)},催化了乙烯聚合,一步法制备出了长链支化聚乙烯(LCBPEs)。聚合过程中,在Cat.I作用下,乙烯转化为分子链末端带有双键的齐聚物;然后Cat.II和Cat.III催化乙烯与乙烯齐聚物共聚,制得LCBPEs。通过改变n(Cat.I)/n(Cat.II)和n(Cat.I)/n(Cat.III),所制得的LCBPEs的支化度可在物质的量分数0.84%~3.95%范围内进行调控。另外,所得聚合物的结构也利用核磁共振和凝胶渗透色谱进行了进一步的证明。与线性聚乙烯相比,本文所制得的LCBPEs的结晶度较低,拉伸强度也较低。不过,由于长链支化结构的影响,LCBPEs的剪切变稀现象不如线性聚乙烯明显,且断裂伸长率高于线性聚乙烯。

English


    1. [1] STADLER F J, ARIKAN-CONLEY B, KASCHTA J, et al. Synthesis and characterization of novel ethylene-graft-ethylene/propylene copolymers[J]. Macromolecules, 2011, 44:5053-5063.

    2. [2] LI H, ROJAS G, WAGENER K B. Precision long-chain branched polyethylene via acyclic diene metathesis polymerization[J]. ACS Macro Lett, 2015, 4:1225-1228.

    3. [3] MOORTHI K, KAMIO J K, DOROS R, et al. Monte Carlo simulation of short chain branched polyolefins:structure and properties[J]. Macromolecules, 2012, 45:8453-8466.

    4. [4] NA Y, DAI S, CHEN C. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE)[J]. Macromolecules, 2018, 51:4040-4048.

    5. [5] LIAN K, ZHU Y, LI W, et al. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization[J]. Macromolecules, 2017, 50:6074-6080.

    6. [6] VEGA J F, SANTAMARÍA A, MUÑOZ-ESCALONA A, et al. Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes[J]. Macromolecules, 1998, 31:3639-3647.

    7. [7] MALMBERG A, GABERIEL C, STEFFL T, et al. Long-Chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry[J]. Macromolecules, 2002, 35:1038-1048.

    8. [8] GIBSON V C, SPITZMESSER S K. Advances in non-metallocene olefin polymerization Catalysis[J]. Chem Rev, 2003, 103:283-316.

    9. [9] WU J Q, LI Y S. Well-defined vanadium complexes as the catalysts for olefin polymerization[J]. Coord Chem Rev, 2011, 255:2303-2314.

    10. [10] MAKIO H, TERAO H, IWASHITA A, et al. FI catalysts for olefin polymerization-a comprehensive treatment[J]. Chem Rev, 2011, 111:2363-2449.

    11. [11] NOMURA K, ZHANG S. Design of vanadium complex catalysts for precise olefin polymerization[J]. Chem Rev, 2011, 111:2342-2362.

    12. [12] TANG L M, HU T, PAN L, et al. Ethylene/α-olefin copolymerization with bis(β-enaminoketonato) titanium complexes activated with modified methylaluminoxane[J]. J Polym Sci Part A:Polym Chem, 2005, 43:6323-6330.

    13. [13] ZHANG S W, LI Y G, LU L P, et al. Ethylene polymerization and ethylene/hexene copolymerizaion with vandium catalysts bearing thiophenolphosphine ligands[J]. Chinese J Polym Sci, 2013, 31:885-893.

    14. [14] ZHANG W J, HUANG W, LIANG T L, et al. Half-titanocene chlorides 2-(benzimidazol-2-yl)quinolin-8-olates:synthesis, characterization and ethylene (co-)polymerization behavior[J]. Chinese J Polym Sci, 2013, 31:601-609.

    15. [15] LU L P, MU J S, LI Y S. Copolymerization of ethylene with 10-undecen-1-ol using highly active vanadium(III) precatalysts bearing bis(imino)pyrrolyl ligands[J]. Chinese J Polym Sci, 2014, 32:603-608.

    16. [16] NOMURA K, OYA K, IMANISHI Y. Ethylene/α-olefin copolymerization by various nonbridged (cyclopentadienyl)(aryloxy)titanium(IV) complexes-MAO catalyst system[J]. J Mol Catal A:Chem, 2001, 174:127-140.

    17. [17] GUO C Y, PEULECKE N, KINDERMANN M K, et al. Copolymerization of ethylene with linear α-olefins by 2-phosphinophenolate nickel catalysts[J]. J Polym Sci Part A:Polym Chem, 2009, 47:258-266.

    18. [18] JONGSOMJIT B, KAEWKRAJANG P, SHIONO T, et al. Supporting effects of silica-supported methylaluminoxane (MAO) with zirconocene catalyst on ethylene/1-olefin copolymerization behaviors for linear low-density polyethylene (LLDPE) production[J]. Ind Eng Chem Res, 2004, 43:7959-7963.

    19. [19] WASILKE J C, OBREY S J, BAKER R T, et al. Concurrent tandem catalysis[J]. Chem Rev, 2005, 105:1001-1020.

    20. [20] ROBERT C, THOMAS C M. Tandem catalysis:a new approach to polymers[J]. Chem Soc Rev, 2013, 42:9392-9402.

    21. [21] CHEN M, CHEN C. Direct and tandem routes for the copolymerization of ethylene with polar functionalized internal olefins[J]. Angew Chem Int Ed, 2020, 59:1206-1210.

    22. [22] BAZAN G C, KOMON Z J A. Synthesis of branched polyethylene by tandem catalysis[J]. Macromol Rapid Commun, 2001, 22:467-478.

    23. [23] SOUZA R F D, JR O L C. Recent advances in olefin polymerization using binary catalyst systems[J]. Macromol Rapid Commun, 2001, 22:1293-1301.

    24. [24] BARNHART R W, BAZAN G C. Synthesis of branched polyolefins using a combination of homogeneous metallocene mimics[J]. J Am Chem Soc, 1998, 120:1082-1083.

    25. [25] KOMON Z J A, BU X,BAZAN G C. Synthesis of butene-ethylene and hexene-butene-ethylene copolymers from ethylene via tandem action of well-defined homogeneous catalysts[J]. J Am Chem Soc, 2000, 122:1830-1831.

    26. [26] QUIJADA R, ROJAS R, BANZA G, et al. Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalysts[J]. Macromolecules, 2001, 34:2411-2417.

    27. [27] KOMON Z J A, DIAMOND G M, LECLERC M K, et al. Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures[J]. J Am Chem Soc, 2002, 124:15280-15285.

    28. [28] MUSIKABHUMMA K, SPANIOL T P, OKUDA J. Synthesis of branched polyethylenes by the tandem catalysis of silica-supported linked cyclopentadienyl-amido titanium catalysts and a homogeneous dibromo nickel catalyst having a pyridylimine ligand[J]. J Polym Sci Part A:Polym Chem, 2003, 41:528-544.

    29. [29] YE Z, ALOBAIDI F, ZHU S. A tandem catalytic system for the synthesis of ethylene-hex-1-ene copolymers from ethylene stock[J]. Macromol Rapid Commun, 2004, 25:647-652.

    30. [30] SCHWERDTFEGER E D, PRICE C J, CHAI J, et al. Tandem catalyst system for linear low-density polyethylene with short and long branching[J]. Macromolecules, 2010, 43:4838-4842.

    31. [31] LIU S, MOTTA A, DELFERRO M, et al. Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for highly branched polyethylenes[J]. J Am Chem Soc, 2013, 135:8830-8833.

    32. [32] MALMBERG A, KOKKO E, LEHMUS P, et al. Long-chain branched polyethene polymerized by metallocene catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO[J]. Macromolecules, 1998, 31:8448-8454.

    33. [33] BEIGZADEH D, SOARES J B P, DUEVER T. A. Combined metallocene catalysts:an efficient technique to manipulate long-chain branching frequency of polyethylene[J]. Macromol Rapid Commun, 1999, 20:541-545.

    34. [34] SPERBER O, KAMINSKY W. Synthesis of long-chain branched comp-structured polyethylene from ethylene by tandem action of two single-site catalysts[J]. Macromolecules, 2003, 36:9014-9019.

    35. [35] WANG K T, WANG Y X, WANG B, et al. Novel zirconium complexes with constrained cyclic β-enaminoketonato ligands:improved catalytic capability toward ethylene polymerization[J]. Dalton Trans, 2016, 45:10308-10318.

    36. [36] 洪缪. 功能化聚烯烃的合成及性能研究[D]. 长春:中国科学院大学长春应用化学研究所, 2012.HONG M. Development of facile and efficient strategy to high-performance functional polyolefin[D]. Changchun:Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, 2012.

    37. [37] HARRISON D, COULTER I M, WANG S, et al. Olefin polymerization using supported metallocene catalysts:development of high activity catalysts for use in slurry and gas phase ethylene polymerizations[J]. J Mol Catal A:Chem, 1998, 128:65-77.

    38. [38] QUIJADA R, NARVÁEZ A, ROJAS R, et al. Synthesis and characterization of copolymers of ethylene and 1-octadecene using the rac-Et(Ind)2ZrCl2/MAO catalyst system[J]. Macromol Chem Phys, 1999, 200:1306-1310.

    39. [39] GALLAND G B, SOUZA R F D, MAULER R S, et al. 13C NMR determination of the composition of linear low-density polyethylene obtained with[η3-methallyl-nickle-diimine]PF6 complex[J]. Macromolecules, 1999, 32:1620-1625.

    40. [40] CLAS S D, HEYDING R D, MCFADDIN D C, et al. Crystallinities of copolymers of ethylene and 1-alkenes[J]. J Polym Sci Part B:Polym Phys, 1988, 26:1271-1286.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  30
  • HTML全文浏览量:  1
文章相关
  • 收稿日期:  2020-06-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章