正六棱型MoO3-x微米柱光催化剂的制备及性能

唐飞 杜多勤 谭芸妃 秦莉晓

引用本文: 唐飞, 杜多勤, 谭芸妃, 秦莉晓. 正六棱型MoO3-x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335 shu
Citation:  TANG Fei,  DU Duo-Qin,  TAN Yun-Fei,  QIN Li-Xiao. Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335 shu

正六棱型MoO3-x微米柱光催化剂的制备及性能

    通讯作者: 秦莉晓,E-mail:lxqin@cqu.edu.cn
  • 基金项目:

    国家自然科学基金(No.21776025)、中央高校基本科研业务费(Nos.2018CDKYGL0002,2018CDKYHG0028)和重庆市基础研究与前沿技术研究计划(No.CSTC2016JCYJA0474)资助

摘要: 首先采用低温水相合成法制备了正六棱型MoO3微米柱,然后以抗坏血酸为还原剂一步还原法制备了一种表面氧空位可控的MoO3-x光催化材料。MoO3-x具有较窄的禁带宽度和较大的光吸收范围。以罗丹明B为模拟污染物的光催化降解实验表明,随着氧空位的增加,MoO3-x的催化活性明显增加。对于Mo5+摩尔分数为20.1%的MoO2.799样品,降解90%的初始质量浓度为10 mg/L的罗丹明溶液只需要60 min。本研究为高性能半导体光催化材料的制备提供了一种新思路。

English


    1. [1] LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20):1601694.1-1601694.20.

    2. [2] FUJISHIMA A, ZHANG X T, TRYK D A, et al. TiO2 photocatalysis and related surface phenomena[J]. Surf Sci Rep, 2008, 63(12):515-582.

    3. [3] CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018):746-750.

    4. [4] XIA Y C, WY C S, ZHAO N Y, et al. Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor[J]. Mater Lett, 2016, 171:117-120.

    5. [5] 胡媛. 层状化合物三氧化钼的制备及其光电性质研究[D]. 安徽:安徽大学,2007.HU Y. Study on synthesis and photoelectricity properties of layered compound-molybdenum trioxide[D]. Anhui:Anhui University,2007.

    6. [6] HEMANT K J, SARKAR S. A Novel in Situ γ-alumina coating method and CO oxidation over MoO3/Cu catalysts[J]. Ind Eng Chem Res, 2001, 40(23):5543-5546.

    7. [7] 董晓东, 董相廷, 刘俊华, 等. MoO3纳米粒子水溶胶的制备与光致变色性质研究[J]. 稀有金属材料与工程, 2005, 34(3):421-424.DONG X D, DONG X T, LIU J H, et al. Study of preparation and photochromism of MoO3 nanoparticles hydrosol[J]. Rare Met Mater Eng, 2005, 34(3):421-424.

    8. [8] 梅雪峰, 宋继梅, 王红, 等. 六方相MoO3的制备及其光催化活性[J]. 广州化工, 2011, 39(12):6-9.MEI X F, SONG J M, WANG H, et al. Synthesis and photocatalytic activity of hexagonal phase MoO3[J]. Guangzhou Chem Ind, 2011, 39(12):6-9.

    9. [9] GREINER M T, HELANDER M G, TANG W M, et al. Universal energy-level alignment of molecules on metal oxides[J]. Nat Mater, 2012, 11(1):76-81.

    10. [10] ZHENG L, XU Y, JIN D, et al. Novel metastable hexagonal MoO3 nanobelts:synthesis, photochromic, and electrochromic properties[J]. Chem Mater, 2009, 21(23):5681-5690.

    11. [11] CHITHAMBARARAJ A, SANJINI N S, BOSE A C, et al. Flower-like hierarchical h-MoO3:new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catal Sci Tech, 2013, 3(5):1405-1414.

    12. [12] WANG W, TADE M O, SHAO Z P, et al. Nitrogen-doped simple and complex oxides for photocatalysis:a review[J]. Prog Mater Sci, 2018, 92:33-63.

    13. [13] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. J Photochem Photobiol C, 2013, 15:1-20.

    14. [14] LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B-Environ, 2017, 205:421-432.

    15. [15] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12):911-921.

    16. [16] CORDERO-LANZAC T, PALOS R, ARANDES J M, et al. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Appl Catal B-Environ, 2017, 203:389-399.

    17. [17] WANG Y T, CAI J M, WU M Q, et al. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B-Environ, 2018, 239:398-407.

    18. [18] CHENG H F, QIAN X F, KUWAHARA Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31):4616-4621.

    19. [19] WANG Y L, LUO Q, WU N, et al. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(13):7170-7179.

    20. [20] YANG B, CHEN Y, CUI Y, et al. Over 100 nm thick MoO<em>x films with superior hole collection and transport properties for organic solar cells[J]. Adv Energy Mater, 2018, 8(25):1800698.1-1800698.9.

    21. [21] QIN P L, FANG G J, CHENG F, et al. Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application[J]. ACS Appl Mater Interfaces, 2014, 6(4):2963-2973.

    22. [22] SAKAUSHI K, THOMAS J, KASKEL S, et al. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional alpha-MoO3 electrode materials[J]. Chem Mater, 2013, 25(12):2557-2563.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  34
  • HTML全文浏览量:  6
文章相关
  • 收稿日期:  2019-12-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章