Citation: FENG Yan-Jun,  JIAO Xiao-Mei,  WANG Ze,  ZHAO Ya-Qi,  HUO Shu-Hui,  ZHAO Ai-Juan,  WANG Zhi-Zhou,  LU Xiao-Quan. ZnO@Cys Multi-pathway Synergistic Enhanced Tetracarboxyphenyl Porphyrin Electrochemiluminescence for Analysis of Uric Acid[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 851-859. doi: 10.19756/j.issn.0253-3820.221640 shu

ZnO@Cys Multi-pathway Synergistic Enhanced Tetracarboxyphenyl Porphyrin Electrochemiluminescence for Analysis of Uric Acid

  • Corresponding author: LU Xiao-Quan, luxq@nwnu.edu.cn
  • Received Date: 27 December 2022
    Revised Date: 23 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22174110, 22127803), the Special Fund Project for Guiding Local Scientific and Technological Development by the Central Government (No. 2020-2060503-17), the Industrial Support Plan of Gansu Provincial Department of Education (No. 2021cyzc-01) and the Innovation Fund Project for Higher Education of Gansu Province (No. 2021A-187).

  • Uric acid (UA), as a typical small biological molecule, is an important antioxidant that helps maintain blood pressure. However, abnormal UA concentration can cause gout, metabolic syndrome and cardiovascular diseases. A quick and sensitive test for UA is crucial for diagnosis of these diseases. In this study, TCPP-ZnO@Cys composite was prepared by acylation of zinc oxide (ZnO) modified with tetracarboxyphenyl porphyrin (TCPP) and L-cysteine (L-cysteine). ZnO@Cys, as a co-reactant, could promote S2O82- to produce more SO4.-, and catalytically induced H2O to produce an appropriate amount of OH·. It could also promote the generation of SO4.-. The electrochemiluminescence (ECL) strength of TCPP was enhanced by synergistic action of multiple pathways. The redox reaction between UA and K2S2O8 consumed SO4.- in the system, which would quench the ECL signal. Based on these, a detection platform for UA was successfully constructed. The ECL intensity of the system had a linear relationship with concentration of UA in the range of 2.4-48.0 μmol/L. The linear equation was y=5170.7 lgCUA - 1049.1, and the detection limit was 0.63 μmol/L (3σ). The established detection platform realized highly sensitive detection of UA.
  • 加载中
    1. [1]

      RICHTER M M. Chem. Rev., 2004, 104(6):3003-3036.

    2. [2]

      ZHANG X, WANG P L, NIE Y X, MA Q. TrAC, Trends Anal. Chem., 2021, 143:116410.

    3. [3]

      TOKEL N E, KESZTHELYI C P, BARD A J. J. Am. Chem. Soc., 1972, 94(14):4872-4877.

    4. [4]

      SANTHANAM K S V, BARD A J. J. Am. Chem. Soc., 1965, 87(1):139-140.

    5. [5]

      ZHOU Y L, YIN H S, ZHAO W W, AI S H. Coord. Chem. Rev., 2020, 424:21351.

    6. [6]

      ZHANG X, LU W, MA C, WANG T, ZHU J J, ZARE R N, MIN Q. Chem. Sci., 2022, 13(21):6244-6253.

    7. [7]

      MIAO D, GUYER K M, DONG F, JIANG L, STECK A K, REWERS M, EISENBARTH G S, YU L. Diabetes, 2013, 62(12):4174-4178.

    8. [8]

      LIU M L, LI Y, ZHAO M L, ZHUO Y, HE X J. Biosens. Bioelectron., 2022, 214:114512.

    9. [9]

      WANG C, LIU S, JU H. Bioelectrochemistry, 2022, 149:108281.

    10. [10]

      GAO H, HAN W, QI H, GAO Q, ZHANG C. Anal. Chem., 2020, 92(12):8278-8284.

    11. [11]

      WANG C, WU T, MIAO X, WANG P, FENG Q. Talanta, 2023, 253:124074.

    12. [12]

    13. [13]

      LIU G, HONG J, MA K, WAN Y, ZHANG X, HUANG Y, KANG K, YANG M, CHEN J, DENG S. Biosens. Bioelectron., 2020, 150:111963.

    14. [14]

      MUKHOPADHYAY R D, KIM Y, KOO J, KIM K. Acc. Chem. Res., 2018, 51(11):2730-2738.

    15. [15]

      PU G, YANG Z, WU Y, WANG Z, DENG Y, GAO Y J, ZHANG Z, LU X. Anal. Chem., 2019, 91(3):2319-2328.

    16. [16]

      PARK J M, HONG K I, LEE H, JANG W D. Acc. Chem. Res., 2021, 54(9):2249-2260.

    17. [17]

      HAN Q, WANG C, LI Z, WU J, LIU P, MO F, FU Y. Anal. Chem., 2020, 92(4):3324-3331.

    18. [18]

      WU Y, HAN Z, WEI L, SUN H, WANG T, CHEN J, ZHANG R, LU X. Anal. Chem., 2020, 92(7):5464-5472.

    19. [19]

      LI Y X, LI J, CAI W R, XIN W L, MARKS R S, ZENG H B, COSNIER S, ZHANG X, SHAN D. Anal. Chem., 2020, 92(23):15270-15274.

    20. [20]

    21. [21]

      SHU J, HAN Z, ZHENG T, DU D, ZOU G, CUI H. Anal. Chem., 2017, 89(23):12636-12640.

    22. [22]

      GU Y, WU Y, LI L, CHEN W, LI F, KITAGAWA S. Angew. Chem. Int. Ed., 2017, 56(49):15658-15662.

    23. [23]

      LI L F, NING X M, QIAN Y X, PU G Q, WANG Y F, ZHANG X H, WANG H, CHEN J, SHAN D L, LU X Q. Sens. Actuators, B, 2018, 257:331-339.

    24. [24]

      GAO H, WANG J, JIA M, YANG F, ANDRIAMITANTSOA R S, HUANG X, DONG W, WANG G. Chem. Eng. J., 2019, 374:684-693.

    25. [25]

      LIN J, HUANG B, DAI Y, WEI J, CHEN Y. Mater. Sci. Eng. C, 2018, 93:739-745.

    26. [26]

      HUANG Y, ZHAO P, MIAO H, SHAO S, WANG L, CHEN Y, JIA C, XIA J. Colloids Surf., A, 2021, 616:126367.

    27. [27]

      TU T T, SUN Y, LEI Y M, CHAI Y Q, ZHUO Y, YUAN R. Nanoscale, 2022, 14(15):5751-5757.

    28. [28]

      BARTZAK A, NAMIKI Y, QIAN D J, MIYAKE J, BOGUTA A, GOC J, LUKASIEWICZ J, FRACKOWIAK D. J. Photochem. Photobiol., A, 2003, 159(3):259-272.

    29. [29]

      LOU J, TANG X, ZHANG H, GUAN W, LU C. Angew. Chem. Int. Ed., 2021, 60(23):13029-13034.

    30. [30]

      ZHU Q, MAO W, ZHANG C, ZHOU Y, TANG Z, YU C. Anal. Chim. Acta, 2020, 1140:89-98.

    31. [31]

      ZHANG L, ZHAO C, BAI Y, WANG Q, MA P, MA X, ZHU P. Electroanalysis, 2021, 34(2):302-309.

    32. [32]

      GUO H, WANG M, ZHAO L, YOULIWASI N, LIU C. Microporous Mesoporous Mater., 2018, 263:21-27.

    33. [33]

      JIN D, SEO M H, HUY B T, PHAM Q T, CONTE M L, THANGADURAI D, LEE Y I. Biosens. Bioelectron., 2016, 77:359-365.

    34. [34]

      BOROUMAND S, CHAMJANGALI M A, BAGHERIAN G. Spectrochim. Acta, Part A, 2017, 174:203-213.

    35. [35]

      BIBI A, HSU S C, JI W F, CHO Y C, SANTIAGO K S, YEH J M. Polymers, 2021, 13(2):252.

  • 加载中
    1. [1]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(7)
  • Abstract views(2298)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return