Citation: MA Xiao,  ZHAO Dan,  WU Pei-Cheng,  LIN Ji-Hong,  WANG Fang,  XU Yan-Jie,  HE Long-Long,  LIU Xin-Yu,  SUN Jian. Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 922-933. doi: 10.19756/j.issn.0253-3820.221625 shu

Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis

  • Corresponding author: ZHAO Dan,  SUN Jian, 
  • Received Date: 18 December 2022
    Revised Date: 15 February 2023

    Fund Project: Supported by the Henan Provincial Science and Technology Plan Project-Science and Technology Research Project (No. 212102210122), the National Natural Science Foundation of China (Nos. 22104046), the Henan Provincial Department of Education Key Project (Nos. 23A150056, 23A530007) and the Luoyang Institute of Science and Technology High-level Talents Startup Project (No. 2019BZ18).

  • Nanozymes, as a class of nanomaterials with enzyme-like activity, exhibit good development and application potential in the fields of analytical chemistry and disease diagnosis and treatment. Metal-organic frameworks (MOFs) materials are porous crystalline materials formed by metal nodes and organic ligands, and their structures have certain similarities with natural enzymes. At present, researchers have developed a variety of nanozymes based on MOFs, including nanozymes with peroxidase-like, oxidase-like, superoxide dismutase-like, and hydrolase-like activities, showing broad application prospects. In this paper, according to the structural characteristics of the materials, MOFs-based nanozymes were divided into four categories, including original MOFs, chemically modified MOFs, MOFs composite materials and MOFs derivatives, and the basic principles and latest developments in the preparation of these nanozymes were introduced. Based on analytical strategies such as colorimetric sensing, fluorescent sensing and electrochemical sensing, the application progress of MOFs-based nanozymes in bioanalysis was reviewed. The challenges of their practical applications and future development trends were also discussed.
  • 加载中
    1. [1]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    2. [2]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    3. [3]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    4. [4]

      COLONNA S, GAGGERO N, RICHELMI C, PASTA P. Trends Biotechnol., 1999, 17(4):163-168.

    5. [5]

      LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.

    6. [6]

      AI L, LI L, ZHANG C, FU J, JIANG J. Chem. Eur. J., 2013, 19(45):15105-15108.

    7. [7]

      ZHANG J W, ZHANG H T, DU Z Y, WANG X, YU S H, JIANG H L. Chem. Commun., 2014, 50(9):1092-1094.

    8. [8]

      CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.

    9. [9]

      WANG Y, XUE Y, ZHAO Q, WANG S, SUN J, YANG X. Anal. Chem., 2022, 94(47):16345-16352.

    10. [10]

      WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.

    11. [11]

      CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.

    12. [12]

      DALAPATI R, SAKTHIVEL B, GHOSALYA M K, DHAKSHINAMOORTHY A, BISWAS S. CrystEngComm, 2017, 19(39):5915-5925.

    13. [13]

      LIU Y, ZHOU M, CAO W, WANG X, WANG Q, LI S, WEI H. Anal. Chem., 2019, 91(13):8170-8175.

    14. [14]

      ZHANG L, ZHANG Y, WANG Z, CAO F, SANG Y, DONG K, PU F, REN J, QU X. Mater. Horiz., 2019, 6(8):1682-1687.

    15. [15]

      MONDLOCH J E, KATZ M J, ISLEY III W C, GHOSH P, LIAO P, BURY W, WAGNER G W, HALL M G, DECOSTE J B, PETERSON G W, SNURR R Q, CRAMER C J, HUPP J T, FARHA O K. Nat. Mater., 2015, 14(5):512-516.

    16. [16]

      LIU X, QI W, WANG Y F, SU R X, HE Z M. Eur. J. Inorg. Chem., 2018, 2018(41):4579-4585.

    17. [17]

      NIU X, LI X, LYU Z, PAN J, DING S, RUAN X, ZHU W, DU D, LIN Y. Chem. Commun., 2020, 56(77):11338-11353.

    18. [18]

      VALEKAR A H, BATULE B S, KIM M I, CHO K H, HONG D Y, LEE U H, CHANG J S, PARK H G, HWANG Y K. Biosens. Bioelectron., 2018, 100:161-168.

    19. [19]

      HU S S, YAN J J, HUANG X M, GUO L H, LIN Z Y, LUO F, QIU B, WONNG K Y, CHEN G N. Sens. Actuators, B, 2018, 267:312-319.

    20. [20]

      LIU T, TIAN J, CUI L, LIU Q, WU L, ZHANG X. Colloids Surf. B, 2019, 178:137-145.

    21. [21]

      LIU Y, ZHANG L, LI Q, DAI H, XIANG T, YANG G, LI L. Anal. Chim. Acta, 2021, 1146:24-32.

    22. [22]

      SONG C, DING W, LIU H, ZHAO W, YAO Y, YAO C. New J. Chem., 2019, 43(32):12776-12784.

    23. [23]

      LIU Q, ZHANG A, WANG R, ZHANG Q, CUI D. Nano-Micro Lett., 2021, 13(1):154.

    24. [24]

      CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.

    25. [25]

      LI Y, HE X, YIN J J, MA Y, ZHANG P, LI J, DING Y, ZHANG J, ZHAO Y, CHAI Z, ZHANG Z. Angew. Chem. Int. Ed., 2015, 127(6):1852-1855.

    26. [26]

      TAN B, ZHAO H, WU W, LIU X, ZHANG Y, QUAN X. Nanoscale, 2017, 9(47):18699-18710.

    27. [27]

      XU J, PENG J, WANG X, HOU X. ACS Sustain. Chem. Eng., 2022, 10(29):9315-9324.

    28. [28]

      DÍAZ A, LOEWEN P C, FITA I, CARPENA X. Arch. Biochem. Biophys., 2012, 525(2):102-110.

    29. [29]

      YIN Y, GAO C, XIAO Q, LIN G, LIN Z, CAI Z, YANG H. ACS Appl. Mater. Interfaces, 2016, 8(42):29052-29061.

    30. [30]

      LI D, WU S, WANG F, JIA S, LIU Y, HAN X, ZHANG L, ZHANG S, WU Y. Mater. Lett., 2016, 178:48-51.

    31. [31]

      ZHANG L Y, FAN C, LIU M, LIU F J, BIAN S S, DU S Y, ZHU S Y, WANG H. Sens. Actuators, B, 2018, 266:543-552.

    32. [32]

      WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 129(50):16298-16301.

    33. [33]

      ZHONG X, XIA H, HUANG W, LI Z, JIANG Y. Chem. Eng. J., 2020, 381:122758.

    34. [34]

      TAN H, MA C, GAO L, LI Q, SONG Y, XU F, WANG T, WANG L. Chem. Eur. J., 2014, 20(49):16377-16383.

    35. [35]

      SONG Y, CHO D, VENKATESWARLU S, YOON M. RSC Adv., 2017, 7(17):10592-10600.

    36. [36]

      DONG W F, ZHUANG Y X, LI S Q, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 255:2050-2057.

    37. [37]

      ZHAO J, DONG W F, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 263:575-584.

    38. [38]

      TANG M L, LI J Q, CAI X D, SUN T D, CHEN C X. Chem. Asian J., 2022, 17(7):e202101422.

    39. [39]

      HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.

    40. [40]

      ZHAO C, XIONG C, LIU X, QIAO M, LI Z, YUAN T, WANG J, QU Y, WANG X Q, ZHOU F, XU Q, WANG S, CHEN M, WANG W, LI Y, YAO T, WU Y, LI Y. Chem. Commun., 2019, 55(16):2285-2288.

    41. [41]

      LIANG L, HUANG Y, LIU W, ZUO W, YE F, ZHAO S. Front. Chem., 2020, 8:671.

    42. [42]

      ZHENG H Q, LIU C Y, ZENG X Y, CHEN J, LÜ J, LIN R G, CAO R, LIN Z J, SU J W. Inorg. Chem., 2018, 57(15):9096- 9104.

    43. [43]

      WANG Y, ZHU Y, BINYAM A, LIU M, WU Y, LI F. Biosens. Bioelectron., 2016, 86:432-438.

    44. [44]

      LI H, LIU H, ZHANG J, CHENG Y, ZHANG C, FEI X, XIAN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40716-40725.

    45. [45]

      CUI F, DENG Q, SUN L. RSC Adv., 2015, 5(119):98215-98221.

    46. [46]

      WU T, MA Z, LI P, LIU M, LIU X, LI H, ZHANG Y, YAO S. Talanta, 2019, 202:354-361.

    47. [47]

    48. [48]

      ZHAO C, JIANG Z, MU R, LI Y. Talanta, 2016, 159:365-370.

    49. [49]

      LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.

    50. [50]

      HU S, ZHU L, LAM C W, GUO L, LIN Z, QIU B, WONG K Y, CHEN G, LIU Z. Microchim. Acta, 2019, 186(3):190.

    51. [51]

      LI Y, YU C, YANG B, LIU Z, XIA P, WANG Q. Biosens. Bioelectron., 2018, 102:307-315.

    52. [52]

      LU J, HU Y H, WANG P X, LIU P Q, CHEN Z G, SUN D P. Sens. Actuators, B, 2020, 311:127909.

    53. [53]

      ARIF D, HUSSAIN Z, SOHAIL M, LIAQAT M A, KHAN M A, NOOR T. Front. Chem., 2020, 8:573510.

    54. [54]

      WANG Z, ZHANG Y C, WANG X Z, HAN L. Biosens. Bioelectron., 2022, 206:114120.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(46)
  • Abstract views(3189)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return