Citation: SUN Chen-Fang,  WANG Tie. Research and Application Progress of Organic Field-Effect Transistor-based Gas Sensing Array[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 777-789. doi: 10.19756/j.issn.0253-3820.221580 shu

Research and Application Progress of Organic Field-Effect Transistor-based Gas Sensing Array

  • Corresponding author: WANG Tie, wangtie@email.tjut.edu.cn
  • Received Date: 23 November 2022
    Revised Date: 31 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21925405, 22104141, 22104142, 22004122, 201874005) and the National Key Research and Development Program of China (Nos. 2018YFA0208800, 2021YFD1700300).

  • In recent years, all kinds of gas-sensing technologies have received more and more attention in the fields of environmental monitoring, disease diagnosis and industrial safety. Among them, gas sensors based on organic field-effect transistors (OFETs) have developed rapidly in the sensing field due to their unique signal conversion and amplification functions, as well as the advantages such as miniaturization and integration. Starting from the device structure of OFETs, this review introduced and analyzed the selection of materials, the optimization of preparation processes, and the practical application in recent years, highlighting its unique advantages in the sensing field. Finally, the current difficulties and challenges of OFETs-based gas sensors were also summarized.
  • 加载中
    1. [1]

      LUO X, DAVIS J J. Chem. Soc. Rev., 2013, 42(13):5944-5962.

    2. [2]

      ZHANG C, CHEN P, HU W. Chem. Soc. Rev., 2015, 44(8):2087-2107.

    3. [3]

      WU M, HOU S, YU X, YU J. J. Mater. Chem. C, 2020, 8(39):13482-13500.

    4. [4]

      CAVALLARI M R, PASTRANA L M, SOSA C D F, MARQUINA A M R, IZQUIERDO J E E, FONSECA F J, AMORIM C A, PATERNO L G, KYMISSIS I. Materials, 2021, 14(1):3.

    5. [5]

      HONG S, WU M, HONG Y, JEONG Y, JUNG G, SHIN W, PARK J, KIM D, JANG D, LEE J H. Sens. Actuators, B, 2021, 330:129240.

    6. [6]

      PARK M S, MERESA A A, KWON C M, KIM F S. Polymers, 2019, 11(10):1682.

    7. [7]

      ZANG Y, ZHANG F, HUANG D, DI C, MENG Q, GAO X, ZHU D. Adv. Mater., 2014, 26(18):2862-2867.

    8. [8]

      WANG C, DONG H, HU W, LIU Y, ZHU D. Chem. Rev., 2012, 112(4):2208-2267.

    9. [9]

      WANG C, ZHANG X, DONG H, CHEN X, HU W. Adv. Energy Mater., 2020, 10(29):2000955.

    10. [10]

      LIN P, YAN F. Adv. Mater., 2012, 24(1):34-51.

    11. [11]

      SHEN H, DI C A, ZHU D. Sci. China Chem., 2017, 60(4):437-449.

    12. [12]

      LI H, SHI W, SONG J, JANG H J, DAILEY J, YU J, KATZ H E. Chem. Rev., 2019, 119(1):3-35.

    13. [13]

      KUBOTA R, SASAKI Y, MINAMIKI T, MINAMI T. ACS Sens., 2019, 4(10):2571-2587.

    14. [14]

      WANG Y, GONG Q, MIAO Q. Mater. Chem. Front., 2020, 4(12):3505-3520.

    15. [15]

      SOMEYA T, DODABALAPUR A, HUANG J, SEE K C, KATZ H E. Adv. Mater., 2010, 22(34):3799-3811.

    16. [16]

      MIRZA M, WANG J, WANG L, HE J, JIANG C. Org. Electron., 2015, 24:96-100.

    17. [17]

      HUANG J, MIRAGLIOTTA J, BECKNELL A, KATZ H E. J. Am. Chem. Soc., 2007, 129(30):9366-9376.

    18. [18]

      LIU D, CHU Y, WU X, HUANG J. Sci. China Mater., 2017, 60(10):977-984.

    19. [19]

      JEONG J W, LEE Y D, KIM Y M, PARK Y W, CHOI J H, PARK T H, SOO C D, WON S M, HAN I K, JU B K. Sens. Actuators, B, 2010, 146:40-45.

    20. [20]

      KLINE R J, MCGEHEE M D, KADNIKOVA E N, LIU J, FRÉCHET J M J. Adv. Mater., 2003, 15(18):1519-1522.

    21. [21]

      SAVVA A, HALLANI R, CENDRA C, SURGAILIS J, HIDALGO T C, WUSTONI S, SHEELAMANTHULA R, CHEN X, KIRKUS M, GIOVANNITTI A, SALLEO A, MCCULLOCH I, INAL S. Adv. Funct. Mater., 2020, 30(11):1907657.

    22. [22]

      CHANG J F, SUN B, BREIBY D W, NIELSEN M M, SÖLLING T I, GILES M, MCCULLOCH I, SIRRINGHAUS H. Chem. Mater., 2004, 16(23):4772-4776.

    23. [23]

      YANG Y, ZHANG G, LUO H, YAO J, LIU Z, ZHANG D. ACS Appl. Mater. Interfaces, 2016, 8(6):3635-3643.

    24. [24]

      YANG Y, KATZ H E. J. Mater. Chem. C, 2017, 5(8):2160-2166.

    25. [25]

      YUVARAJA S, SURYA S G, CHERNIKOVA V, VIJJAPU M T, SHEKHAH O, BHATT P M, CHANDRA S, EDDAOUDI M, SALAMA K N. ACS Appl. Mater. Interfaces, 2020, 12(16):18748-18760.

    26. [26]

      RUBIO-GIMÉNEZ V, ALMORA-BARRIOS N, ESCORCIA-ARIZA G, GALBIATI M, SESSOLO M, TATAY S, MARTÍ-GASTALDO C. Angew. Chem. Int. Ed., 2018, 57(46):15086-15090.

    27. [27]

      LU J, LIU D, ZHOU J, CHU Y, CHEN Y, WU X, HUANG J. Adv. Funct. Mater., 2017, 27(20):1700018.

    28. [28]

      YU S H, GIRMA H G, SIM K M, YOON S, PARK J M, KONG H, CHUNG D S. Nanoscale, 2019, 11(38):17709-17717.

    29. [29]

      HUANG L, WANG Z, CHEN J, WANG B, CHEN Y, HUANG W, CHI L, MARKS T J, FACCHETTI A. Adv. Mater., 2021, 33(14):2007041.

    30. [30]

      LAN L, CHEN J, WANG Y, LI P, YU Y, ZHU G, LI Z, LEI T, YUE W, MCCULLOCH I. Chem. Mater., 2022, 34(4):1666-1676.

    31. [31]

      GUO D Y, TSAI Y, YU T F, LEE W Y. J. Mater. Chem. C, 2018, 6(44):12006-12015.

    32. [32]

      MOREIRA J, VALE A C, ALVES N M. J. Mater. Chem. B, 2021, 9(18):3778-3799.

    33. [33]

      VEGIRAJU S, LUO X L, LI L H, AFRAJ S N, LEE C, ZHENG D, HSIEH H C, LIN C C, HONG S H, TSAI H C, LEE G H, TUNG S H, LIU C L, CHEN M C, FACCHETTI A. Chem. Mater., 2020, 32(4):1422-1429.

    34. [34]

      ZHANG F, QU G, MOHAMMADI E, MEI J, DIAO Y. Adv. Funct. Mater., 2017, 27(23):1701117.

    35. [35]

      GAO X, DUAN S, LI J, KHAN D, ZOU Y, ZHENG L, LIU J, REN X, HU W. J. Mater. Chem. C, 2018, 6(46):12498-12502.

    36. [36]

      MINEMAWARI H, YAMADA T, MATSUI H, TSUTSUMI J, HAAS S, CHIBA R, KUMAI R, HASEGAWA T. Nature, 2011, 475(7356):364-367.

    37. [37]

      DUAN S, GAO X, WANG Y, YANG F, CHEN M, ZHANG X, REN X, HU W. Adv. Mater., 2019, 31(16):1807975.

    38. [38]

      PHUNG T H, GAFUROV A N, KIM I, KIM S Y, KIM K M, LEE T M. Sci. Rep., 2021, 11(1):19982.

    39. [39]

      DUAN S, WANG T, GENG B, GAO X, LI C, ZHANG J, XI Y, ZHANG X, REN X, HU W. Adv. Mater., 2020, 32(12):1908388.

    40. [40]

      ANDERSSON ERSMAN P, LASSNIG R, STRANDBERG J, TU D, KESHMIRI V, FORCHHEIMER R, FABIANO S, GUSTAFSSON G, BERGGREN M. Nat. Commun., 2019, 10(1):5053.

    41. [41]

      LI J, LI L, CHEN Q, ZHU W, ZHANG J. J. Mater. Chem. C, 2022, 10(3):860-869.

    42. [42]

      JIANG S, CHENG R, WANG X, XUE T, LIU Y, NEL A, HUANG Y, DUAN X. Nat. Commun., 2013, 4(1):2225.

    43. [43]

      XIE H, LI Y T, LEI Y M, LIU Y L, XIAO M M, GAO C, PANG D W, HUANG W H, ZHANG Z Y, ZHANG G J. Anal. Chem., 2016, 88(22):11115-11122.

    44. [44]

      HU J, CHEN X, ZHANG Y. Sens. Actuators, B, 2021, 349:130738.

    45. [45]

      WEI S, TIAN F, GE F, WANG X, ZHANG G, LU H, YIN J, WU Z, QIU L. ACS Appl. Mater. Interfaces, 2018, 10(26):22504-22512.

    46. [46]

      NKETIA-YAWSON B, JUNG A R, NOH Y, RYU G S, TABI G D, LEE K K, KIM B S, NOH Y Y. ACS Appl. Mater. Interfaces, 2017, 9(8):7322-7330.

    47. [47]

      LU C F, SHIH C W, CHEN C A, CHIN A, SU W F. Adv. Funct. Mater., 2018, 28(40):1803145.

    48. [48]

      LI H, SHI Y, HAN G, LIU J, ZHANG J, LI C, LIU J, YI Y, LI T, GAO X, DI C, HUANG J, CHE Y, WANG D, HU W, LIU Y, JIANG L. Angew. Chem. Int. Ed., 2020, 59(11):4380-4384.

    49. [49]

      SONG Z, LIU G, TANG Q, ZHAO X, TONG Y, LIU Y. Org. Electron., 2017, 48:68-76.

    50. [50]

      LEE J H, SEO Y, PARK Y D, ANTHONY J E, KWAK D H, LIM J A, KO S, JANG H W, CHO K, LEE W H. Sci. Rep., 2019, 9(1):21.

    51. [51]

      SHAO B, LIU Y, ZHUANG X, HOU S, HAN S, YU X, YU J. J. Mater. Chem. C, 2019, 7(33):10196-10202.

    52. [52]

      ZHUANG X, HUANG W, HAN S, JIANG Y, ZHENG H, YU J. Org. Electron., 2017, 49:334-339.

    53. [53]

      HAN S, YANG Z, LI Z, ZHUANG X, AKINWANDE D, YU J. ACS Appl. Mater. Interfaces, 2018, 10(44):38280-38286.

    54. [54]

      ZHUANG X, HAN S, HUAI B, SHI W, YU J. Sens. Actuators, B, 2019, 279:238-244.

    55. [55]

      HUANG W, ZHUANG X, MELKONYAN F S, WANG B, ZENG L, WANG G, HAN S, BEDZYK M J, YU J, MARKS T J, FACCHETTI A. Adv. Mater., 2017, 29(31):1701706.

    56. [56]

      SONG R, ZHOU X, WANG Z, ZHU L, LU J, XUE D, WANG Z, HUANG L, CHI L. Org. Electron., 2021, 91:106083.

    57. [57]

      LV A, WANG M, WANG Y, BO Z, CHI L. Chem. Eur. J., 2016, 22(11):3654-3659.

    58. [58]

      SURYA S G, ASHWATH B S N, MISHRA S, KARTHIK A R B, SASTRY A B, PRASAD B L V, RANGAPPA D, RAO V R. Sens. Actuators, B, 2016, 235:378-385.

    59. [59]

      YANG Y, LIU Z, CHEN L, YAO J, LIN G, ZHANG X, ZHANG G, ZHANG D. Chem. Mater., 2019, 31(5):1800-1807.

    60. [60]

      QIAO X, CHEN X, HUANG C, LI A, LI X, LU Z, WANG T. Angew. Chem. Int. Ed., 2019, 58(46):16523-16527.

    61. [61]

      LIU L, XIONG W, CUI L, XUE Z, HUANG C, SONG Q, BAI W, PENG Y, CHEN X, LIU K, ZHANG S, WEN L, CHE Y, WANG T. Angew. Chem. Int. Ed., 2020, 59(37):15953-15957.

    62. [62]

      WU X, HUANG J. IEEE J. Em. Sel. Top. C., 2017, 7(1):92-101.

    63. [63]

      CRONE B, DODABALAPUR A, GELPERIN A, TORSI L, KATZ H E, LOVINGER A J, BAO Z. Appl. Phys. Lett., 2001, 78(15):2229-2231.

    64. [64]

      CHANG J B, LIU V, SUBRAMANIAN V, SIVULA K, LUSCOMBE C, MURPHY A, LIU J, FRÉCHET J M J. J. Appl. Phys., 2006, 100(1):014506.

    65. [65]

      ANISIMOV D S, CHEKUSOVA V P, TRUL A A, ABRAMOV A A, BORSHCHEV O V, AGINA E V, PONOMARENKO S A. Sci. Rep., 2021, 11(1):10683.

    66. [66]

      NI Z, WANG H, DONG H, DANG Y, ZHAO Q, ZHANG X, HU W. Nat. Chem., 2019, 11(3):271-277.

    67. [67]

      WANG P, LIU D, WANG Y, ZHANG P, YU P, WANG M, ZHEN Y, DONG H, HU W. Chin. Chem. Lett., 2020, 31(11):2909-2912.

    68. [68]

      FU L N, LENG B, LI Y S, GAO X K. Chin. Chem. Lett., 2018, 29(1):175-178.

    69. [69]

      YAO Y, CHEN Y, WANG H, SAMORì P. SmartMat, 2020, 1(1):e1009.

    70. [70]

      JI J, YANG B, ZHANG C, CAI Y, CHEN J, ZHAO C, WANG T, WU L, LIU M, BAI J, WANG J, WU Z, CHEN S, LING H, AN Z, CHEN Y, WANG J, HUANG W, MENG H. SmartMat, 2022, 4(2):e1153.

    71. [71]

      DONG H, JIANG S, JIANG L, LIU Y, LI H, HU W, WANG E, YAN S, WEI Z, XU W, GONG X. J. Am. Chem. Soc., 2009, 131(47):17315-17320.

    72. [72]

      ZHEN Y G, DONG H L, JIANG L, HU W P. Chin. Chem. Lett., 2016, 27(8):1330-1338.

    73. [73]

      XU J, WU H C, ZHU C, EHRLICH A, SHAW L, NIKOLKA M, WANG S, MOLINA-LOPEZ F, GU X, LUO S, ZHOU D, KIM Y H, WANG G J N, GU K, FEIG V R, CHEN S, KIM Y, KATSUMATA T, ZHENG Y Q, YAN H, CHUNG J W, LOPEZ J, MURMANN B, BAO Z. Nat. Mater., 2019, 18(6):594-601.

    74. [74]

      QIN Z, GAO H, DONG H, HU W. Adv. Mater., 2021, 33(31):e2007149.

    75. [75]

      GAO H, MIAO Z, QIN Z, YANG J, WANG T, GAO C, DONG H, HU W. Adv. Mater., 2022, 34(8):e2108795.

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Yunying Wu Zhilan Mo Xue Zhou Yu Yuan Yunfei Ma Jing Chen Gang Tang . Empowering the Digital Transformation of Organic Chemistry Experiments with Sensing Technology: A Case of Atmospheric Distillation, Vacuum Distillation and Fractionation. University Chemistry, 2025, 40(11): 310-317. doi: 10.12461/PKU.DXHX202503078

    11. [11]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    12. [12]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    16. [16]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    17. [17]

      Zengbo Ke Baoyue Cao Xiaojie Hou Youying Di Shengli Gao . Exploration of Rare Gases in the Solar System. University Chemistry, 2025, 40(10): 130-155. doi: 10.12461/PKU.DXHX202410073

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

Metrics
  • PDF Downloads(8)
  • Abstract views(2994)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return