基于聚中性红/多壁碳纳米管复合材料的比率型电化学传感器检测雌三醇

孙志远 樊文芳 王勇 庄欠粉

引用本文: 孙志远, 樊文芳, 王勇, 庄欠粉. 基于聚中性红/多壁碳纳米管复合材料的比率型电化学传感器检测雌三醇[J]. 分析化学, 2023, 51(1): 42-52. doi: 10.19756/j.issn.0253-3820.221543 shu
Citation:  SUN Zhi-Yuan,  FAN Wen-Fang,  WANG Yong,  ZHUANG Qian-Fen. Poly(neutral red)/Multi-walled Carbon Nanotube Composite Modified Electrochemical Sensor for Ratiometric Detection of Estriol[J]. Chinese Journal of Analytical Chemistry, 2023, 51(1): 42-52. doi: 10.19756/j.issn.0253-3820.221543 shu

基于聚中性红/多壁碳纳米管复合材料的比率型电化学传感器检测雌三醇

    通讯作者: 庄欠粉,E-mail:qfzhuang@ncu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.31960495,32160600,21864017)资助。

摘要: 基于聚中性红/多壁碳纳米管复合材料构建了检测雌三醇的比率型电化学传感器,利用聚中性红作为内参比电活性探针,雌三醇与聚中性红的氧化峰电流比值作为比率电化学信号,实现了雌三醇的定量检测。聚中性红/多壁碳纳米管复合材料具有良好的电导率和电催化性能,可提高检测灵敏度。实验结果表明,雌三醇在聚中性红/多壁碳纳米管复合材料修饰的玻碳电极上发生双电子和双质子的电化学氧化过程。传感器检测雌三醇的线性范围为0.1~2.0μmol/L,检出限为0.08μmol/L(S/N=3)。此传感器具有灵敏度高、抗干扰能力强及稳定性好等优点,可用于雌三醇药膏、人尿液和湖水样中雌三醇的分析。

English


    1. [1]

      ESPOSITO G. Gynecol. Endocrinol., 1991, 5(2):131-153.ESPOSITO G. Gynecol. Endocrinol., 1991, 5(2):131-153.

    2. [2]

      HEAD K A. Altern. Med. Rev., 1998, 3(2):101-113.HEAD K A. Altern. Med. Rev., 1998, 3(2):101-113.

    3. [3]

      HUANG X Z, SPINK D C, SCHNEIGER E, LING H L, RAI A J, ROSANO T G, CHEN B R, CAO Z M. Clin. Chem., 2014, 60(1):260-268.HUANG X Z, SPINK D C, SCHNEIGER E, LING H L, RAI A J, ROSANO T G, CHEN B R, CAO Z M. Clin. Chem., 2014, 60(1):260-268.

    4. [4]

      LEIS H J, FAULER G, RECHBERGER G N, WINDISCHHOFER W. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2003, 794(2):205-213.LEIS H J, FAULER G, RECHBERGER G N, WINDISCHHOFER W. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2003, 794(2):205-213.

    5. [5]

      TANG Y P, ZHAO S Q, WU Y S, ZHOU J W, LI M. Anal. Methods., 2013, 5(16):4068-4073.TANG Y P, ZHAO S Q, WU Y S, ZHOU J W, LI M. Anal. Methods., 2013, 5(16):4068-4073.

    6. [6]

      BARRETO F C, SILVA M K L, CESARINO I. Chemosensors, 2022, 10(10):395.BARRETO F C, SILVA M K L, CESARINO I. Chemosensors, 2022, 10(10):395.

    7. [7]

      CHARITHRA M M, MANJUNATHA J G G, RARIL C. Adv. Pharm. Bull., 2020, 10(2):247-253.CHARITHRA M M, MANJUNATHA J G G, RARIL C. Adv. Pharm. Bull., 2020, 10(2):247-253.

    8. [8]

      JODAR L V, SANTOS F A, ZUCOLOTTO V. J. Solid State Electrochem., 2018, 22(5):1431-1438.JODAR L V, SANTOS F A, ZUCOLOTTO V. J. Solid State Electrochem., 2018, 22(5):1431-1438.

    9. [9]

      SILVEIRA J, PIOVESAN J V, SPINELLI A. Microchem. J., 2017, 133:22-30.SILVEIRA J, PIOVESAN J V, SPINELLI A. Microchem. J., 2017, 133:22-30.

    10. [10]

      ZHAO Q, FARAJ Y, LIU L Y, WANG W, XIE R, LIU Z, JU X J, WEI J, CHU L Y. Microchem. J., 2020, 158:105185.ZHAO Q, FARAJ Y, LIU L Y, WANG W, XIE R, LIU Z, JU X J, WEI J, CHU L Y. Microchem. J., 2020, 158:105185.

    11. [11]

      RAYMUNDO-PEREIRA P A, CAMPOS A M, VICENTINI F C, JANEGITZ B C, MENDONCA C D, FURINI L N, BOAS N V, CALEGARO M L, CONSTANTINO C J L, MACHADO S A S, OLIVEIRA O N. Talanta, 2017, 174:652-659.RAYMUNDO-PEREIRA P A, CAMPOS A M, VICENTINI F C, JANEGITZ B C, MENDONCA C D, FURINI L N, BOAS N V, CALEGARO M L, CONSTANTINO C J L, MACHADO S A S, OLIVEIRA O N. Talanta, 2017, 174:652-659.

    12. [12]

      JIN H, GUI R J, YU J B, LV W, WANG Z H. Biosens. Bioelectron., 2017, 91:523-537.JIN H, GUI R J, YU J B, LV W, WANG Z H. Biosens. Bioelectron., 2017, 91:523-537.

    13. [13]

      KARYAKIN A A, BOBROVA O A, KARYAKINA E E. J. Electroanal. Chem., 1995, 399(1-2):179-184.KARYAKIN A A, BOBROVA O A, KARYAKINA E E. J. Electroanal. Chem., 1995, 399(1-2):179-184.

    14. [14]

      YANG Y X, YANG J, HE Y C, LI Y C. Sens. Actuators, B, 2021, 330(7):129302.YANG Y X, YANG J, HE Y C, LI Y C. Sens. Actuators, B, 2021, 330(7):129302.

    15. [15]

      SLJUKIC B, BANKS C E, COMPTON R G. Nano Lett., 2006, 6(7):1556-1558.SLJUKIC B, BANKS C E, COMPTON R G. Nano Lett., 2006, 6(7):1556-1558.

    16. [16]

      XIANG L, ZHANG Z N, YU P, ZHANG J, SU L, OHSAKA T, MAO L Q. Anal. Chem., 2008, 80(17):6587-6593.XIANG L, ZHANG Z N, YU P, ZHANG J, SU L, OHSAKA T, MAO L Q. Anal. Chem., 2008, 80(17):6587-6593.

    17. [17]

      BARD A J, FAULKNER L R. Electrochemical Methods:Fundamentals and Applications, 2nd Ed. New York:John Wiley and Sons., 2001.BARD A J, FAULKNER L R. Electrochemical Methods:Fundamentals and Applications, 2nd Ed. New York:John Wiley and Sons., 2001.

    18. [18]

      MAYER P, HOLZE R. Surf. Sci., 2003, 522(1-3):55-63.MAYER P, HOLZE R. Surf. Sci., 2003, 522(1-3):55-63.

    19. [19]

      MORAVKOVA Z, TRCHOVA M, TOMSIK E, CECHVALA J, STEJSKAL J. Polym. Degrad. Stab., 2012, 97(8):1405-1414.MORAVKOVA Z, TRCHOVA M, TOMSIK E, CECHVALA J, STEJSKAL J. Polym. Degrad. Stab., 2012, 97(8):1405-1414.

    20. [20]

      MAZEIKIENE R, NIAURA G, MALINAUSKAS A. J. Colloid Interface Sci., 2009, 336(1) 195-199.MAZEIKIENE R, NIAURA G, MALINAUSKAS A. J. Colloid Interface Sci., 2009, 336(1) 195-199.

    21. [21]

      LAVIRON E. J. Electroanal. Chem. Interfacial Electrochem., 1979, 101(1):19-28.LAVIRON E. J. Electroanal. Chem. Interfacial Electrochem., 1979, 101(1):19-28.

    22. [22]

      MING Y C, LONG Y J, JUN T X, ZHEN Z G, YUE Z. React. Funct. Polym., 2006, 66(11):1336-1341.MING Y C, LONG Y J, JUN T X, ZHEN Z G, YUE Z. React. Funct. Polym., 2006, 66(11):1336-1341.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  33
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2022-11-03
  • 修回日期:  2022-11-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章