Citation: LI Cao-Ling,  WU Kang-Bing,  NIU Li. Recent Advances in Electrochemical Sensing Applications of Copper-based Metal-Organic Frameworks[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 463-471. doi: 10.19756/j.issn.0253-3820.221537 shu

Recent Advances in Electrochemical Sensing Applications of Copper-based Metal-Organic Frameworks

  • Corresponding author: WU Kang-Bing, kbwu@hust.edu.cn
  • Received Date: 1 November 2022
    Revised Date: 8 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21976062, 21775050) and the National Key Research and Development Project of China (No.2015CB352100).

  • Metal-organic frameworks (MOFs) are a type of new crystalline porous material formed by self-assembly of metal ions/clusters and organic ligands. MOFs have shown huge potential in electrochemical sensing due to their high porosity, large specific surface area, high electrocatalytic activity, and adjustable and diverse structure. Among numerous MOFs, copper-based metal-organic frameworks (Cu-MOFs) have attracted more attention because of their high electrocatalytic activity. The studies on the properties and applications of Cu-MOFs prepared by different ligands and methods are increasing. Currently, Cu-MOFs are also achieving wide range of applications in life electrochemical sensing, environmental electrochemical detection and food safety electrochemical analysis. This article mainly introduced the recent research progress of Cu-MOFs prepared by different methods and their various composites combined with the relevant researches of our group in electrochemical sensing applications. Finally, the future applications and challenges of electrochemical sensors based on Cu-MOFs were prospected.
  • 加载中
    1. [1]

      YUAN S, FENG L, WANG K, PANG J, BOSCH M, LOLLAR C, SUN Y, QIN J, YANG X, ZHANG P, WANG Q, ZOU L, ZHANG Y, ZHANG L, FANG Y, LI J, ZHOU H. Adv. Mater., 2018, 30(37):1704303.

    2. [2]

      DING M, FLAIG R W, JIANG H L, YAGHI O M. Chem. Soc. Rev., 2019, 48(10):2783-2828.

    3. [3]

      CHO H S, YANG J, GONG X, ZHANG Y B, MOMMA K, WECKHUYSEN B M, DENG H, KANG J K, YAGHI O M, TERASAKI O. Nat. Chem., 2019, 11(6):562-570.

    4. [4]

      MEHTA J, BHARDWAJ N, BHARDWAJ S K, KIM K H, DEEP A. Coord. Chem. Rev., 2016, 322:30-40.

    5. [5]

      CAO X, TAN C, SINDORO M, ZHANG H. Chem. Soc. Rev., 2017, 46(10):2660-2677.

    6. [6]

      PACHFULE P, YANG X, ZHU Q L, TSUMORI N, UCHIDA T, XU Q. J. Mater. Chem. A, 2017, 5(10):4835-4841.

    7. [7]

      JIAO L, WANG Y, JIANG H L, XU Q. Adv. Mater., 2018, 30(37):1703663.

    8. [8]

      XIAO Y H, GU Z G, ZHANG J. Nanoscale, 2020, 12(24):12712-12730.

    9. [9]

      LI H, WANG K, SUN Y, LOLLAR C T, LI J, ZHOU H. Mater. Today, 2018, 21(2):108-121.

    10. [10]

      NIU Z, CUI X, PHAM T, VERMA G, LAN P C, SHAN C, XING H, FORREST K A, SUEPAUL S, SPACE B, NAFADY A, AL-ENIZI A M, MA S. Angew. Chem. Int. Ed., 2021, 60(10):5283-5288.

    11. [11]

      DAGLAR H, GULBALKAN H C, AVCI G, AKSU G O, ALTUNDAL O F, ALTINTAS C, ERUCAR I, KESKIN S. Angew. Chem. Int. Ed., 2021, 60(14):7828-7837.

    12. [12]

      DUTTA S, KIM J, HSIEH P H, HSU Y S, KANETI Y V, SHIEH F K, YAMAUCHI Y, WU K C W. Small Methods, 2019, 3(11):1900213.

    13. [13]

      FANG C, DENG Z, CAO G, CHU Q, WU Y, LI X, PENG X, HAN G. Adv. Funct. Mater., 2020, 30(16):1910085.

    14. [14]

      ARUN KUMAR S, BALASUBRAMANIAM B, BHUNIA S, JAISWAL M K, VERMA K, PRATEEK K, KHADEMHOSSEINI A, GUPTA R K, GAHARWAR A K. Wiley Interdiscip. Rew. Nanomed. Nanobiotechnol., 2021, 13(2):e1674.

    15. [15]

      LI R, CHEN T, PAN X. ACS Nano, 2021, 15(3):3808-3848.

    16. [16]

      LI S, LIN J, XIONG W, GUO X, WU D, ZHANG Q, ZHU Q L, ZHANG L. Coord. Chem. Rev., 2021, 438:213872.

    17. [17]

      DUAN H, ZHAO Z, LU J, HU W, ZHANG Y, LI S, ZHANG M, ZHU R, PANG H. ACS Appl. Mater. Interfaces, 2021, 13(28):33083-33090.

    18. [18]

      JI L, WANG J, WU K, YANG N. Adv. Funct. Mater., 2018, 28(13):1706961.

    19. [19]

      JI L, HAO J, WU K, YANG N. J. Phys. Chem. C, 2019, 123(4):2248-2255.

    20. [20]

      HU P, ZHU X, LUO X, HU X, JI L. Microchim. Acta, 2020, 187(2):145.

    21. [21]

      MUELLER U, SCHUBERT M, TEICH F, PUETTER H, SCHIERLE-ARNDT K, PASTRÉ J. J. Mater. Chem., 2006, 16(7):626-636.

    22. [22]

      LIU Y, WEI Y, LIU M, BAI Y, WANG X, SHANG S, CHEN J, LIU Y. Angew. Chem. Int. Ed., 2021, 60(6):2887-2891.

    23. [23]

      SHI E, ZOU X, LIU J, LIN H, ZHANG F, SHI S, LIU F, ZHU G, QU F. Dalton Trans., 2016, 45(18):7728-7736.

    24. [24]

      SACHDEVA S, VENKATESH M R, MANSOURI B E, WEI J, BOSSCHE A, KAPTEIJN F, ZHANG G Q, GASCON J, DE SMET L C P M, SUDHÖLTER E J R. Small, 2017, 13(29):1604150.

    25. [25]

      JI L, WANG Y, WU K, ZHANG W. Talanta, 2016, 159:215-221.

    26. [26]

      JI L D, CHENG Q, WU K B, YANG X F. Sens. Actuators, B, 2016, 231:12-17.

    27. [27]

      GUO X, LIN C, ZHANG M, DUAN X, DONG X, SUN D, PAN J, YOU T. Front. Chem., 2021, 9:743637.

    28. [28]

      BAGHAYERI M, AMIRI A, SAFAPOUR MOGHADDAM B, NODEHI M. J. Electrochem. Soc., 2020, 167(16):167522.

    29. [29]

      LI C, HAO J, WU K. Anal. Chim. Acta, 2019, 1085:68-74.

    30. [30]

      LI C, WU K. Anal. Chim. Acta, 2021, 1162:338473.

    31. [31]

      LI C, SHEN J, WU K, YANG N. Small, 2022, 18(11):2106607.

    32. [32]

      LI J, XIA J, ZHANG F, WANG Z, LIU Q. J. Chin. Chem. Soc., 2018, 65(6):743-749.

    33. [33]

      KARIMI-HARANDI M H, SHABANI-NOOSHABADI M, DARABI R. J. Electrochem. Soc., 2021, 168(9):097507.

    34. [34]

      CHEN S, WANG C, ZHANG M, ZHANG W, QI J, SUN X, WANG L, LI J. J. Hazard. Mater., 2020, 390:122157.

    35. [35]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. Sens. Actuators, B, 2019, 283:487-494.

    36. [36]

      MAHMOUD A M, MAHNASHI M H, EL-WEKIL M M. Talanta, 2021, 221:121562.

    37. [37]

      SINGH S, NUMAN A, ZHAN Y, SINGH V, VAN HUNG T, NAM N D. J. Hazard. Mater., 2020, 399:123042.

    38. [38]

      BRONDANI D, ZAPP E, DA SILVA HEYING R, DE SOUZA B, CRUZ VIEIRA I. Electroanalysis, 2017, 29(12):2810-2817.

    39. [39]

      ZHANG D, ZHANG J, ZHANG R, SHI H, GUO Y, GUO X, LI S, YUAN B. Talanta, 2015, 144:1176-1181.

    40. [40]

      XIAO J, HU X, WANG K, ZOU Y, GYIMAH E, YAKUBU S, ZHANG Z. Biosens. Bioelectron., 2020, 150:111883.

    41. [41]

      XU X, ZHANG H, LI C H, GUO X M. Microchem. J., 2022, 175:107198.

    42. [42]

      XU X, LI C H, ZHANG H, GUO X M. Nanomaterials, 2022, 12(3):482.

    43. [43]

      QIAO X, ARSALAN M, MA X, WANG Y, YANG S, WANG Y, SHENG Q, YUE T. Anal. Bioanal. Chem., 2021, 413(3):839-851.

    44. [44]

      JI L, WANG Q, PENG L, LI X, ZHU X, HU P. Materials, 2022, 15(13):4625.

    45. [45]

      HMADEH M, LU Z, LIU Z, GÁNDARA F, FURUKAWA H, WAN S, AUGUSTYN V, CHANG R, LIAO L, ZHOU F, PERRE E, OZOLINS V, SUENAGA K, DUAN X, DUNN B, YAMAMTO Y, TERASAKI O, YAGHI O M. Chem. Mater., 2012, 24(18):3511-3513.

    46. [46]

      WU F, FANG W, YANG X, XU J, XIA J, WANG Z. J. Chin. Chem. Soc., 2019, 66(5):522-528.

    47. [47]

      HU Q, QIN J, WANG X F, RAN G Y, WANG Q, LIU G X, MA J P, GE J Y, WANG H Y. Front. Chem., 2021, 9:1034.

    48. [48]

      DONG S Y, SUO G C, LI N, CHEN Z, PENG L, FU Y L, YANG Q, HUANG T L. Sens. Actuators, B, 2016, 222:972-979.

    49. [49]

      REZKI M, SEPTIANI N L W, IQBAL M, HARIMURTI S, SAMBEGORO P, ADHIKA D R, YULIARTO B. J. Mater. Chem. B, 2021, 9(28):5711-5721.

    50. [50]

      JI L, LI F, LI C, HU P. Microchem. J., 2022, 181:107688.

    51. [51]

      MINH T T, PHONG N H, VAN DUC H, KHIEU D Q. J. Mater. Sci., 2018, 53(4):2453-2471.

    52. [52]

      SOFI F A, BHAT M A, MAJID K. New J. Chem., 2019, 43(7):3119-3127.

    53. [53]

      ZHENG Y, ZHENG S, XUE H, PANG H. Adv. Funct. Mater., 2018, 28(47):1804950.

    54. [54]

      KALAJ M, BENTZ K C, AYALA S, PALOMBA J M, BARCUS K S, KATAYAMA Y, COHEN S M. Chem. Rev., 2020, 120(16):8267-8302.

    55. [55]

      CHRONOPOULOS D D, SAINI H, TANTIS I, ZBOŘIL R, JAYARAMULU K, OTYEPKA M. Small, 2021, 18(4):2104628.

    56. [56]

      LI X, LI C, WU C, WU K. Anal. Chem., 2019, 91(9):6043-6050.

    57. [57]

      NABI S, SOFI F A, RASHID N, INGOLE P P, BHAT M A. New J. Chem., 2022, 46(4):1588-1600.

    58. [58]

      ZHANG C, HAN M, YU L, QU L, LI Z. J. Electroanal. Chem., 2021, 890:115232.

    59. [59]

      ZHOU Y, LI C, HAO Y, YE B, XU M. Talanta, 2018, 188:282-287.

    60. [60]

      HABIBI B, PASHAZADEH S, SAGHATFOROUSH L A, PASHAZADEH A. J. Electroanal. Chem., 2021, 888:115210.

    61. [61]

      SARAF M, RAJAK R, MOBIN S M. J. Mater. Chem. A, 2016, 4(42):16432-16445.

    62. [62]

      WANG L, YANG H, HE J, ZHANG Y, YU J, SONG Y. Electrochim. Acta, 2016, 213:691-697.

    63. [63]

      ZHOU S, JIANG L, ZHANG J, ZHAO P, YANG M, HUO D, LUO X, SHEN C, HOU C. Microchim. Acta, 2021, 188(5):160.

    64. [64]

      WANG X, WANG Q, WANG Q, GAO F, GAO F, YANG Y, GUO H. ACS Appl. Mater. Interfaces, 2014, 6(14):11573-11580.

    65. [65]

      YANG Y, WANG Q, QIU W, GUO H, GAO F. J. Phys. Chem. C, 2016, 120(18):9794-9803.

    66. [66]

      LI J, XIA J, ZHANG F, WANG Z, LIU Q. Talanta, 2018, 181:80-86.

    67. [67]

      WANG Y, CAO W, WANG L, ZHUANG Q, NI Y. Microchim. Acta, 2018, 185(6):315.

    68. [68]

      MA B, GUO H, WANG M, LI L, JIA X, CHEN H, XUE R, YANG W. Electroanalysis, 2019, 31(6):1002-1008.

    69. [69]

      WANG X, ZHANG J, WEI Y, XING T, CAO T, WU S, ZHU F. Analyst, 2020, 145(5):1933-1942.

    70. [70]

      ZHOU J, LI X, YANG L, YAN S, WANG M, CHENG D, CHEN Q, DONG Y, LIU P, CAI W, ZHANG C. Anal. Chim. Acta, 2015, 899:57-65.

    71. [71]

      SHI L M, PAN J X, ZHOU B, JIANG X. J. Mater. Chem. B, 2015, 3(48):9340-9348.

    72. [72]

      WU L, LU Z, YE J. Biosens. Bioelectron., 2019, 135:45-49.

    73. [73]

      SINGH S, NUMAN A, SOMAILY H H, DAWSARI M M A, ALQARNI M H S, ALAM A, KUMAR P. J. Environ. Chem. Eng., 2021, 9(6):106534.

    74. [74]

      LIU C, BO X J, GUO L P. Sens. Actuator, B, 2019, 297:126741.

    75. [75]

      ZHENG W, LIU Y, YANG P, CHEN Y, TAO J, HU J, ZHAO P. J. Electroanal. Chem., 2020, 862:114018.

    76. [76]

      ZHAN X H, HU S Y, WANG J Q, CHEN H, CHEN X M, YANG J B, YANG H, SU Z H. Sens. Actuators, B, 2021, 346:130499.

    77. [77]

      CHEN H Y, YANG T, LIU F Q, LI W H. Sens. Actuators, B, 2019, 286:401-407.

    78. [78]

      FERRAZ N V D, VASCONCELOS W S, SILVA C S, ALVES S, AMORIM C G, MONTENEGRO M D B S M, AREIAS M C D. Sens. Actuators, B, 2020, 307:127636.

    79. [79]

      DANG W, SUN Y, JIAO H, XU L, LIN M. J. Electroanal. Chem., 2020, 856:113592.

    80. [80]

      MOLLARASOULI F, KURBANOGLU S, ASADPOUR-ZEYNALI K, OZKAN S A. J. Electroanal. Chem., 2020, 856:113672.

    81. [81]

      WANG B, KANG K, JI X, LIU Y, LI X, WANG L, REN J. Nano, 2020, 15(12):2050155.

    82. [82]

      MA J, BAI W, ZHENG J. Microchim. Acta, 2019, 186(7):482.

    83. [83]

      LIU T T, ZHOU M, PU Y X, LIU L Q, LI F F, LI M S, ZHANG M X. Sens. Actuators, B, 2021, 342:130047.

    84. [84]

      GUPTA A, BHARDWAJ S K, SHARMA A L, KIM K H, DEEP A. Environ. Res., 2019, 171:395-402.

    85. [85]

      MA J, ZHENG J. Microchim. Acta, 2020, 187(7):389.

    86. [86]

      SAEDI H, FAT'HI M R, ZARGAR B. J. Chin. Chem. Soc, 2021, 68(10):1954-1964.

    87. [87]

      ZHONG Q, LI Y, ZHANG G. Chem. Eng. J., 2021, 409:128099.

    88. [88]

      CHENG D, LI P, ZHU X, LIU M, ZHANG Y, LIU Y. Chin. J. Chem., 2021, 39(8):2181-2187.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    4. [4]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    5. [5]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    10. [10]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    14. [14]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    15. [15]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(25)
  • Abstract views(2705)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return