Citation: YU Jing,  YAO Zhi-Hao,  HE Kai-Yu,  XING Bing-Cong,  WANG Qiang,  CHENG Ke-Jun,  WANG Liu,  XU Xia-Hong. Nanomaterials-based Optical Biosensors for Detection of Mycotoxins in Traditional Chinese Medicine[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 472-483. doi: 10.19756/j.issn.0253-3820.221510 shu

Nanomaterials-based Optical Biosensors for Detection of Mycotoxins in Traditional Chinese Medicine

  • Corresponding author: CHENG Ke-Jun,  WANG Liu,  XU Xia-Hong, 
  • Received Date: 13 October 2022
    Revised Date: 7 February 2023

    Fund Project: Supported by the Key Research and Development Program of Zhejiang Province, China (No. 2021C02062), the National Natural Science Foundation of China (Nos. 32172307, 32072303) and the Scientific Research Project of Department of Education of Zhejiang Province, China (No. Y202044948).

  • With the rapid development of traditional Chinese medicine (TCM) industry, the demand of TCM is increasing. The quality and safety of TCM are attracting more and more attention. Mycotoxin pollution, which not only affects the quality, and in serious cases, also may cause carcinogenic, teratogenic and mutagenic effects on human body, has become one of the key safety issues of TCM. Rapid and accurate detection of mycotoxins in TCM is essential to ensure the quality and safety. Optical biosensors have been widely applied to rapid detection of mycotoxins due to their advantages such as simplicity to operate, fast response, high sensitivity, and good accuracy. Notably, nanomaterials are extensively used in optical biosensors owing to their unique physicochemical and catalytic properties. This review summarized the optical biosensors for mycotoxins in recent years. The principles, application characteristics and construction methods progress of optical biosensors were emphasized. The optical biosensors were classified into fluorescence, colorimetry, chemiluminescence, surface enhanced Raman scattering and polarized light for detailed discussion. The effects of the main matrix components of TCM on optical biosensors were comprehensively discussed. The challenges and perspectives of optical biosensors for detection of mycotoxins in TCM were highlighted. It was aimed to provide guidance for sensitive, accurate and convenient supervision of the quality of Chinese medicinal materials.
  • 加载中
    1. [1]

    2. [2]

      LYU M, FAN G, XIAO G, WANG T, XU D, GAO J, GE S, LI Q, MA Y, ZHANG H, WANG J, CUI Y, ZHANG J, ZHU Y, ZHANG B. Acta Pharm. Sin. B, 2021, 11(11):3337-3363.

    3. [3]

      JIA Q, WANG L, ZHANG X, DING Y, LI H, YANG Y, ZHANG A, LI Y, LV S, ZHANG J. Pharmacol. Res., 2020, 151:104552.

    4. [4]

      JIANG H, TU H, JIN Y, WU X, LUO Z, CHEN Y, ZHANG D, WU B, WEI Y, YANG Y, ZHOU F. Blood, 2020, 136(Supplement 1):31-32.

    5. [5]

      YOU L, LIANG K, AN R, WANG X. Pharmacol. Res., 2022, 182:106314.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      YUE Y T, ZHANG X F, OUYANG Z, GAO W W, WU J, YANG M H. Chromatographia, 2009, 70(9-10):1495-1499.

    17. [17]

      LIU Q, XIAO C, LIU H, HU Y, GUO W, KONG W. Ind. Crops Prod., 2019, 127:1-10.

    18. [18]

      CHO H D, SUH J H, FENG S, EOM T, KIM J, HYUN S M, KIM J, WANG Y, HAN S B. Food Control, 2019, 96:517-526.

    19. [19]

      YU Y, LI G. J. Hazard. Mater., 2022, 422:126927.

    20. [20]

      HU X, ZHANG P, WANG D, JIANG J, CHEN X, LIU Y, ZHANG Z, TANG B Z, LI P. Biosens. Bioelectron., 2021, 182:113188.

    21. [21]

      HE K, SUN L, WANG L, LI W, HU G, JI X, ZHANG Y, XU X. J. Hazard. Mater., 2022, 423:126962.

    22. [22]

      CHEN Y, LAI Z, ZHANG X, FAN Z, HE Q, TAN C, ZHANG H. Nat. Rev. Chem., 2020, 4(5):243-256.

    23. [23]

      SINGH A K, SRI S, GARIMELLA L B V S, DHIMAN T K, SEN S, SOLANKI P R. ACS Appl. Bio Mater., 2022, 5(3):1179-1186.

    24. [24]

      SONG X, DING Q, PU Y, ZHANG J, SUN R, YIN L, WEI W, LIU S. Biosens. Bioelectron., 2021, 192:113537.

    25. [25]

      RESCH-GENGER U, GRABOLLE M, CAVALIERE-JARICOT S, NITSCHKE R, NANN T. Nat. Methods, 2008, 5(9):763-775.

    26. [26]

      TINNEFELD P, CORDES T. Nat. Methods, 2012, 9(5):426-427.

    27. [27]

      ZHANG X, HU Y, YANG X, TANG Y, HAN S, KANG A, DENG H, CHI Y, ZHU D, LU Y. Biosens. Bioelectron., 2019, 138:111314.

    28. [28]

      ZHANG X L, WEI C B, LI Y, YU D S. TrAC, Trends Anal. Chem., 2019, 116:109-121.

    29. [29]

      WANG R, LU K Q, TANG Z R, XU Y J. J. Mater. Chem. A, 2017, 5(8):3717-3734.

    30. [30]

      WANG C, ZHANG W, QIAN J, WANG L, REN Y, WANG Y, XU M, HUANG X. Anal. Methods, 2021, 13(4):462-468.

    31. [31]

      TANG Z, LIU X, SU B, CHEN Q, CAO H, YUN Y, XU Y, HAMMOCK B D. J. Hazard. Mater., 2020, 387:121678.

    32. [32]

      BRUCE V J, MCNAUGHTON B R. Anal. Chem., 2017, 89(7):3819-3823.

    33. [33]

      SU B, ZHANG Z, SUN Z, TANG Z, XIE X, CHEN Q, CAO H, YU X, XU Y, LIU X, HAMMOCK B D. J. Hazard. Mater., 2022, 422:126838.

    34. [34]

      QIAN J, CUI H, LU X, WANG C, AN K, HAO N, WANG K. Chem. Eng. J., 2020, 401:126017.

    35. [35]

      LI Y, JIA D, REN W, SHI F, LIU C. Adv. Funct. Mater., 2019, 29(32):1903191.

    36. [36]

      XU Z, LI Q X, ZHANG L W, CHEN M L, TU J, CHEN W, ZHU Y Y, CHENG Y H. Sens. Actuators, B, 2022, 352:131050.

    37. [37]

      ZHAO X, WANG Y, LI J, HUO B, HUANG H, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, GAO Z. Anal. Chim. Acta, 2021, 1160:338450.

    38. [38]

      LIN X, LI C, MENG X, YU W, DUAN N, WANG Z, WU S. J. Hazard. Mater., 2022, 433:128750.

    39. [39]

      TIAN T, QIU Z, JIANG Y, ZHU D, ZHOU X. Biosens. Bioelectron., 2022, 196:113701.

    40. [40]

      FU X, SUN J, YE Y, ZHANG Y, SUN X. Biosens. Bioelectron., 2022, 195:113682.

    41. [41]

      KIM K, JO E J, LEE K, PARK J, JUNG G Y, SHIN Y B, LEE L P, KIM M G. Biosens. Bioelectron., 2020, 150:111885.

    42. [42]

      NEW S Y, LEE S T, SU X D. Nanoscale, 2016, 8(41):17729-17746.

    43. [43]

      MA L, WANG J, LI Y, LIAO D, ZHANG W, HAN X, MAN S. J. Hazard. Mater., 2023, 443:130234.

    44. [44]

      LI D, CHEN Z, MEI X. Adv. Colloid Interface Sci., 2017, 250:25-39.

    45. [45]

      GUO H L, MA P F, LI K, ZHANG S X, ZHANG Y, GUO H Q, WANG Z P. Sens. Actuators, B, 2022, 358:131484.

    46. [46]

      WU H, WU J, LIU Y L, WANG H Y, ZOU P. Sens. Actuators, B, 2020, 321:128599.

    47. [47]

      ZHANG X, ZHI H, WANG F, ZHU M, MENG H, WAN P, FENG L. Anal. Chem., 2022, 94(5):2569-2577.

    48. [48]

      ZHU H, CAI Y, QILENG A, QUAN Z, ZENG W, HE K, LIU Y. J. Hazard. Mater., 2021, 411:125090.

    49. [49]

      KUMAR M, SINGH G, KAUR N, SINGH N. ACS Appl. Mater. Interfaces, 2022, 14(1):910-919.

    50. [50]

      SUN Y F, LI S, CHEN R P, WU P, LIANG J. Sens. Actuators, B, 2020, 311:127912.

    51. [51]

      TIAN F, ZHOU J, FU R, CUI Y, ZHAO Q, JIAO B, HE Y. Food Chem., 2020, 320:126607.

    52. [52]

      ZHU H, LIU C, LIU X, QUAN Z, LIU W, LIU Y. Microchim. Acta, 2021, 188(3):62.

    53. [53]

      HE Y, TIAN F, ZHOU J, ZHAO Q, FU R, JIAO B. J. Hazard. Mater., 2020, 388:121758.

    54. [54]

      LERDSRI J, THUNKHAMRAK C, JAKMUNEE J. Food Control, 2021, 130:108323.

    55. [55]

      ALDEWACHI H, CHALATI T, WOODROOFE M N, BRICKLEBANK N, SHARRACK B, GARDINER P. Nanoscale, 2018, 10(1):18-33.

    56. [56]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    57. [57]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    58. [58]

      YANG Y, YIN Y G, LI X L, WANG S, DONG Y Y. Sens. Actuators, B, 2020, 319:128250.

    59. [59]

      QIAN J, REN C, WANG C, AN K, CUI H, HAO N, WANG K. Biosens. Bioelectron., 2020, 166:112443.

    60. [60]

      ZHANG X, ZHI H, ZHU M, WANG F, MENG H, FENG L. Biosens. Bioelectron., 2021, 180:113146.

    61. [61]

      KHANSILI N, MURALI KRISHNA P. ACS Omega, 2021, 6(23):14911-14925.

    62. [62]

      LI M, LI D Y, LI Z Y, HU R, YANG Y H, YANG T. Biosens. Bioelectron., 2022, 209:114241.

    63. [63]

      SUN Y, LV Y, QI S, ZHANG Y, WANG Z. Food Chem., 2022, 371:131145.

    64. [64]

      GONÇALVES I, NUNES C, MENDES S, MARTINS L O, FERREIRA P, COIMBRA M A. Carbohydrate Polym., 2017, 175:628-635.

    65. [65]

      LV X, FRAHAT FODA M, HE J, ZHOU J, CAI J. Food Chem., 2023, 401:134144.

    66. [66]

      CHANDROSS E A. Tetrahedron Lett., 1963, 4(12):761-765.

    67. [67]

      LIU X X, YANG F, LI D X, YUAN R, XIANG Y. Sens. Actuators, B, 2020, 305:127405.

    68. [68]

      LU Y, WEI M, WANG C, WEI W, LIU Y. Nanoscale, 2020, 12(8):4959-4967.

    69. [69]

      SUN X, LEI J, JIN Y, LI B. Anal. Chem., 2020, 92(17):11860-11868.

    70. [70]

      LI Z, WANG L, YUAN Z, LU C. Chem. Commun., 2019, 55(5):679-682.

    71. [71]

      JIANG F, LI P, ZONG C, YANG H. Anal. Chim. Acta, 2020, 1114:58-65.

    72. [72]

      LV X Y, XU X Y, MIAO T, ZANG X F, GENG C, LI Y P, CUI B, FANG Y S. Sens. Actuators, B, 2022, 352:131026.

    73. [73]

      LU L, YUAN W, XIONG Q, WANG M, LIU Y, CAO M, XIONG X. Anal. Chim. Acta, 2021, 1141:83-90.

    74. [74]

      LI Y, LIU D, MENG S, ZHANG J, LI L, YOU T. Anal. Chem., 2022, 94(2):1294-1301.

    75. [75]

      LI L, LIU X, HE S, CAO H, SU B, HUANG T, CHEN Q, LIU M, YANG D P. ACS Omega, 2021, 6(44):30148-30156.

    76. [76]

      SUN M F, LIU J L, CHAI Y Q, ZHANG J, TANG Y, YUAN R. Anal. Chem., 2019, 91(12):7765-7773.

    77. [77]

      ZHOU Y, WANG H, ZHUO Y, CHAI Y, YUAN R. Anal. Chem., 2017, 89(6):3732-3738.

    78. [78]

      ZHAO L, SONG X, LI Y, JIA H, ZHANG N, WEI Q, WU D, JU H. Biosens. Bioelectron., 2023, 221:114925.

    79. [79]

      WANG Y, ZHAO G, CHI H, YANG S, NIU Q, WU D, CAO W, LI T, MA H, WEI Q. J. Am. Chem. Soc., 2021, 143(1):504-512.

    80. [80]

      WEI Q, HUANG C, LU P, ZHANG X, CHEN Y. J. Hazard. Mater., 2023, 441:129960.

    81. [81]

      SONG L C, LI J L, LI H, CHANG Y, DAI S J, XU R M, DOU M H, LI Q J, LV G P, ZHENG T S. Sens. Actuators, B, 2022, 364:131778.

    82. [82]

      JING X, CHANG L, SHI L, LIU X, ZHAO Y, ZHANG W. ACS Appl. Bio Mater., 2020, 3(4):2385-2391.

    83. [83]

      XU K, ZHOU R, TAKEI K, HONG M. Adv. Sci., 2019, 6(16):1900925.

    84. [84]

      ZHAO X, WEN J, ZHANG M, WANG D, WANG Y, CHEN L, ZHANG Y, YANG J, DU Y. ACS Appl. Mater. Interfaces, 2017, 9(8):7710-7716.

    85. [85]

      XIONG J, DONG C, ZHANG J, FANG X, NI J, GAN H, LI J, SONG C. Biosens. Bioelectron., 2022, 213:114442.

    86. [86]

      ZHANG J, SONG C, ZHU Y, GAN H, FANG X, PENG Q, XIONG J, DONG C, HAN C, WANG L. Biosens. Bioelectron., 2023, 219:114836.

    87. [87]

      LI J, WANG W, ZHANG H, LU Z, WU W, SHU M, HAN H. Anal. Chem., 2020, 92(7):4900-4907.

    88. [88]

      WU Z, SUN D W, PU H, WEI Q, LIN X. Food Chem., 2022, 372:131293.

    89. [89]

      WANG H, ZHAO B, YE Y, QI X, ZHANG Y, XIA X, WANG X, ZHOU N. Biosens. Bioelectron., 2022, 207:114164.

    90. [90]

      ROUHBAKHSH Z N, HUANG J W, HO T Y, CHEN C H. TrAC, Trends Anal. Chem., 2022, 157:116820.

    91. [91]

      KHOSHBIN Z, ABNOUS K, TAGHDISI S M, VERDIAN A. Biosens. Bioelectron., 2021, 191:113457.

    92. [92]

      KHOSHBIN Z, ABNOUS K, TAGHDISI S M, VERDIAN A, SAMEIYAN E, RAMEZANI M, ALIBOLANDI M. Food Chem., 2022, 381:132265.

    93. [93]

      VERDIAN A, KHOSHBIN Z, CHEN C H. Biosens. Bioelectron., 2022, 199:113882.

    94. [94]

    95. [95]

      SUN C, LIAO X, JIA B, SHI L, ZHANG D, WANG R, ZHOU L, KONG W. Microchim. Acta, 2020, 187(4):236.

    96. [96]

      HU S, DOU X, ZHANG L, XIE Y, YANG S, YANG M. Toxicon, 2018, 150:144-150.

    97. [97]

      JIANG S, ZHANG L, LI J, OUYANG H, FU Z. Talanta, 2021, 227:122203.

    98. [98]

      LIU X, LIAO X, JIA B, SUN C, ZHOU L, KONG W. Food Chem., 2021, 347:128977.

    99. [99]

    100. [100]

      ZHANG C, DOU X, ZHANG L, SUN M, ZHAO M, OUYANG Z, KONG D, ANTONIO F, YANG M. Toxins, 2018, 10(3):101.

    101. [101]

    102. [102]

      WU H, WANG H, WU J, HAN G, LIU Y, ZOU P. J. Hazard. Mater., 2021, 415:125584.

    103. [103]

    104. [104]

      HUANG X, HUANG T, LI X, HUANG Z. J. Pharm. Biomed. Anal., 2020, 177:112895.

    105. [105]

      ZONG C, JIANG F, WANG X, LI P, XU L, YANG H. Biosens. Bioelectron., 2021, 177:112998.

    106. [106]

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    11. [11]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Kejie Li Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080

    14. [14]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    15. [15]

      Shujun Zou Shujun Xu Liwei Jia Yang Xu . Exploration of Inorganic Chemistry Teaching for Freshmen Majoring in Traditional Chinese Medicine Based on Survey Analysis. University Chemistry, 2025, 40(7): 10-17. doi: 10.12461/PKU.DXHX202409057

    16. [16]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    17. [17]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    19. [19]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    20. [20]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

Metrics
  • PDF Downloads(34)
  • Abstract views(2029)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return