Citation: WU Jin-Dan,  CAO Ying-Zi,  CHEN Kai-Xin,  ZHA Yong-Chao,  LIU Hong-Shen,  ZHOU Ping,  LI Nan. Mannich Reaction Based Aggregation-induced Emission for Fluorescent Sensitive Detection of Formaldehyde[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 194-203. doi: 10.19756/j.issn.0253-3820.221482 shu

Mannich Reaction Based Aggregation-induced Emission for Fluorescent Sensitive Detection of Formaldehyde

  • Corresponding author: LI Nan, linanbie@jnu.edu.cn
  • Received Date: 28 September 2022
    Revised Date: 23 November 2022

    Fund Project: Formaldehyde

  • Formaldehyde is a kind of colorless and odorless carcinogen that can cause many diseases. It is very necessary to develope a simple and sensitive detection method for formaldehyde in environmental monitoring, toxicological assessment, clinical diagnosis and medical care. Herein, a new fluorescence detection method was developed based on the aggregation-induced emission (AIE) effect for aqueous formaldehyde. An AIE probe of tetra (4-hydroxyphenyl) ethylene (TPE-4OH) was synthesized, which could react with formaldehyde by Mannich reaction in the presence of 1,2,4,5-benzenetetramine tetrahydrochloride (BTA), causing an obvious enhancement of fluorescence of TPE-4OH. Due to the fluorescence enhancement of TPE-4OH related to the Mannich reaction and the concentration of formaldehyde, the detection of formaldehyde in the aqueous solution could be realized by measuring the fluorescence intensity of TPE-4OH. By optimizing the conditions of reactant concentration, solution pH value and reaction time, the linear range of detection of formaldehyde was from 1.0 μmol/L to 2000 μmol/L, and the detection limit was 1.0 μmol/L. The results showed that this method had the potential in sensing/diagnosis applications of formaldehyde.
  • 加载中
    1. [1]

      TONG Z, LUO W, WANG Y, YANG F, HAN Y, LI H, LUO H, DUAN B, XU T, MAOYING Q, TAN H, WANG J, ZHAO H, LIU F, WAN Y. PLoS One, 2010, 5(4):e10234.

    2. [2]

      ZHANG Y, YANG Y, HE X, YANG P, ZONG T, SUN P, SUN R C, YU T, JIANG Z. J. Cell Mol. Med., 2021, 25(12):5358-5371.

    3. [3]

      YUAN G, DING H, PENG L, ZHOU L, LIN Q. Food Chem., 2020, 331:127221.

    4. [4]

      ZHAO Y X, ZHU W W, WU Y Y, CHEN Y Y, DU F K, YAN J, TAN X C, WANG Q. Microchem. J., 2021, 160:105727.

    5. [5]

      TENG S, BEARD K, POURAHMAD J, MORIDANI M, EASSON E, POON R, O'BRIEN P J. Chem. Biol. Interact., 2001, 130-132:285-296.

    6. [6]

      MICHEL B W, LIPPERT A R, CHANG C J. J. Am. Chem. Soc., 2012, 134(38):15668-15671.

    7. [7]

      REINGRUBER H, PONTEL L B. Curr. Opin. Toxicol., 2018, 9:28-34.

    8. [8]

      TULPULE K, DRINGEN R. J. Neurochem., 2013, 127(1):7-21.

    9. [9]

      GAO P, JIANG H, CHEN W, CUI Z. Dyes Pigm., 2020, 179:108376.

    10. [10]

      SOMAN A, QIU Y, CHAN LI Q. J. Chromatogr. Sci., 2008, 46(6):461-465.

    11. [11]

      YEH T S, LIN T C, CHEN C C, WEN H M. J. Food Drug Anal., 2013, 21(2):190-197.

    12. [12]

      GANIE A S, BANO S, SULTANA S, SABIR S, KHAN M Z. Electroanalysis, 2021, 33(1):233-248.

    13. [13]

      EHSAN M A, REHMAN A. Anal. Methods, 2020, 12(32):4028-4036.

    14. [14]

      SUN X, ZHANG H, HAO S, ZHAI J, DONG S. ACS Sens., 2019, 4(10):2631-2637.

    15. [15]

      LI M W, SHEN A, LIANG Y Q, ZHEN H, HAO X H, LIU X L, SUN X C, YANG Y X. Anal. Methods, 2020, 12(29):3748-3755.

    16. [16]

      SHIN H S, LIM H H. Int. J. Food Sci. Tech., 2012, 47(2):350-356.

    17. [17]

      MEI J, LEUNG N L C, KWOK R T K, LAM J W Y, TANG B Z. Chem. Rev., 2015, 115(21):11718-11940.

    18. [18]

      FENG G, KWOK R T K, TANG B Z, LIU B. Appl. Phys. Rev., 2017, 4(2):021307.

    19. [19]

    20. [20]

      LIANG J, TANG B Z, LIU B. Chem. Soc. Rev., 2015, 44(10):2798-2811.

    21. [21]

      PAN J, MA J, LIU H, ZHANG Y, LU L. New J. Chem., 2021, 45(45):21151-21159.

    22. [22]

      LIOW S S, ZHOU H, SUGIARTO S, GUO S, CHALASANI M L S, VERMA N K, XU J, LOH X J. Biomacromolecules, 2017, 18(3):886-897.

    23. [23]

      LI Y, ZHANG Y, WANG M, WANG D, CHEN K, LIN P, GE Y, LIU W, WU J. J. Hazard. Mater., 2021, 415:125712.

    24. [24]

      WEN X, YAN L, FAN Z. New J. Chem., 2021, 45(18):8155-8165.

    25. [25]

      ZHAO X, JI C, MA L, WU Z, CHENG W, YIN M. ACS Sens., 2018, 3(10):2112-2117.

    26. [26]

      LI P, ZHANG D, ZHANG Y, LU W, WANG W, CHEN T. ACS Sens., 2018, 3(11):2394-2401.

    27. [27]

    28. [28]

      KLEINMAN E. Comp. Org. Synth., 1991, 2:893-951.

    29. [29]

      ZHAO W, LI C, LIU B, WANG X, LI P, WANG Y, WU C, YAO C, TANG T, LIU X, CUI D. Macromolecules, 2014, 47(16):5586-5594.

    30. [30]

      ZHANG X, MOHAMED M G, XIN Z, KUO S W. Polymer, 2020, 201:122552.

    31. [31]

    32. [32]

      HONG Y, LAM J W Y, TANG B Z. Chem. Commun., 2009, (29):4332-4353.

    33. [33]

      JOSHI N S, WHITAKER L R, FRANCIS M B. J. Am. Chem. Soc., 2004, 126(49):15942-15943.

    34. [34]

      FILHO J F A, LEMOS B C, DE SOUZA A S, PINHEIRO S, GRECO S J. Tetrahedron, 2017, 73(50):6977-7004.

    35. [35]

      LIN Q, FAN Y Q, GONG G F, MAO P P, WANG J, GUAN X W, LIU J, ZHANG Y M, YAO H, WEI T B. ACS Sustainable Chem. Eng., 2018, 6(7):8775-8781.

    36. [36]

      ZHANG S, WEN X, LONG M, XI J, HU J, TANG A. J. Alloys Compd., 2020, 829:154568.

    37. [37]

      ARSAWISET S, TEEPOO S. Anal. Chim. Acta, 2020, 1118:63-72.

    38. [38]

      LIU Q, ZENG X, TIAN Y, HOU X, WU L. Talanta, 2019, 202:274-278.

    39. [39]

      HAN S, WANG J, JIA S. Microchim. Acta, 2014, 181(1-2):147-153.

    40. [40]

      DING N, LI Z, HAO Y, YANG X. Food Chem., 2022, 384:132426.

    41. [41]

      XIN F, TIAN Y, JING J, ZHANG X. Anal. Methods, 2019, 11(23):2969-2975.

    42. [42]

      ZACHUT M, SHAPIRO F, SILANIKOVE N. Food Chem., 2016, 201:270-274.

  • 加载中
    1. [1]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    2. [2]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    3. [3]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    4. [4]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    5. [5]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    6. [6]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

Metrics
  • PDF Downloads(24)
  • Abstract views(2160)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return