Citation: BI Hong-Mei,  GUO Liu-Chun,  ZHANG Ying-Mei,  ZENG Xin-Ru,  XU Liu-Yi. Assembly of Lipid Membrane in Salt Solution and Structure Transformation Induced by Electric Field[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 621-628. doi: 10.19756/j.issn.0253-3820.221466 shu

Assembly of Lipid Membrane in Salt Solution and Structure Transformation Induced by Electric Field

  • Corresponding author: BI Hong-Mei, hongmei_bi@126.com
  • Received Date: 20 September 2022
    Revised Date: 23 December 2022

    Fund Project: Supported by the Natural Science Foundation of Guangdong Province (Nos. 2020A1515010522, 2022A1515012070), the Characteristic Innovation Projects of Universities in Guangdong Province (No. 2019KTSCX109) and the Projects of Talents Recruitment of GDUPT (No. 2019rc114).

  • The nanoscale organisation and transformation of self-assembled lipid membranes is central to the biological function of cell analysis and bionic structure construction as well as the biosensor research. While lots of work have focused on chemical interactions of component within the membrane, limited results address the impact of a trans-membrane potential on the molecular behaviour of the lipids and the related effects, especially in physiological media solutions. Here, in a salt solution that was isotonic to the physiological medium and utilizing a combination of atomic force microscopy (AFM) and fluorescence recovery after photobleaching (FRAP) techniques, the nanoscale molecular arrangement, assemble of neutral and charged lipids at the surface of highly ordered pyrolytic graphite (HOPG) and its structure transition under electrical potentials were studied. The results showed that these lipids were spread on HOPG in the form of monolayers at gel-phase because of the hydrophobic effect between substrate and lipid legs at room temperature. These lipids further assembled to form nanoscale semimicellar structures and exhibited corrugations morphology in AFM images. When a moderate electric field (±1.0 V) was applied on HOPG substrate, it was found to play a major role in inducing the arrangement of lipid molecules and structural transformation, while interfacial solvation forces and ion effects played a minor role. This work provided reference for the simulation of bioelectrochemical devices and the development of phospholipidbased macromolecule laboratory chips.
  • 加载中
    1. [1]

      CHEETHAM M R, BRAMBLE J P, MCMILLAN D G G, KRZEMINSKI L, HAN X, JOHNSON B R G, BUSHBY R J, OLMSTED P D, JEUKEN L J C, MARRITT S J, BUTT J N, EVANS S D. J. Am. Chem. Soc., 2011, 133(17):6521-6524.

    2. [2]

      STRAHL H, HAMOEN L W. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(27):12281-12286.

    3. [3]

      NAJBAUER E E, TEKWANI MOVELLAN K, GILLER K, BENZ R, BECKER S, GRIESINGER C, ANDREAS L B. J. Am. Chem. Soc., 2022, 144(7):2953-2967.

    4. [4]

      HAN X, CHEETHAM M R, SHEIKH K, OLMSTED P D, BUSHBY R J, EVANS S D. Integr. Biol., 2009, 1(2):205-211.

    5. [5]

      PLUHACKOVA K, BÖCKMANN R A. J. Phys.:Condens. Matter, 2015, 27(32):323103.

    6. [6]

      FUENTES N R, SALINAS M L, KIM E, CHAPKIN R S. Biochim. Biophys. Acta, Biomembr., 2017, 1859(9):1668-1678.

    7. [7]

      HAN X, CRITCHLEY K, ZHANG L, PRADEEP S N D, BUSHBY R J, EVANS S D. Langmuir, 2007, 23(3):1354-1358.

    8. [8]

      HAN X, PRADEEP S, CRITCHLEY K, SHEIKH K, BUSHBY R, EVANS S. Chem. -Eur. J., 2007, 13(28):7957-7964.

    9. [9]

      BAO P, CARTRON M L, SHEIKH K H, JOHNSON B R G, HUNTER C N, EVANS S D. Chem. Commun., 2017, 53(30):4250-4253.

    10. [10]

      EL-BEYROUTHY J, MAKHOUL-MANSOUR M M, FREEMAN E C. ACS Appl. Mater. Interfaces, 2022, 14(4):6120-6130.

    11. [11]

      ZHAO G, LI H, GAO J, CAI M, XU H, SHI Y, WANG H, WANG H. Anal. Chem., 2021, 93(42):14113-14120.

    12. [12]

      DI LEONE S, KYROPOULOU M, KÖCHLIN J, WEHR R, MEIER W P, PALIVAN C G. Langmuir, 2022, 38(21):6561-6570.

    13. [13]

      BEASLEY M, FRAZEE N, GROOVER S, VALENTINE S J, MERTZ B, LEGLEITER J. J. Phys. Chem. B, 2022, 126(16):3067-3081.

    14. [14]

      LEBÈGUE E, SMIDA H, FLINOIS T, VIÉ V, LAGROST C, BARRIÈRE F. J. Electroanal. Chem., 2018, 808:286-292.

    15. [15]

      JUHANIEWICZ J, SEK S. Electrochim. Acta, 2015, 162:53-61.

    16. [16]

      ABBASI F, LEITCH J J, SU Z F, SZYMANSKI G, LIPKOWSKI J. Electrochim. Acta, 2018, 267:195-205.

    17. [17]

      LI M, CHEN M, SHEEPWASH E, BROSSEAU C L, LI H, PETTINGER B, GRULER H, LIPKOWSKI J. Langmuir, 2008, 24(18):10313-10323.

    18. [18]

      CHEN M, LI M, BROSSEAU C L, LIPKOWSKI J. Langmuir, 2009, 25(2):1028-1037.

    19. [19]

      ZIMMERMANN R, KÜTTNER D, RENNER L, KAUFMANN M, ZITZMANN J, MÜLLER M, WERNER C. Biointerphases, 2009, 4(1):1-6.

    20. [20]

      SU Z F, SHODIEV M, LEITCH J J, ABBASI F, LIPKOWSKI J. Langmuir, 2018, 34(21):6249-6260.

    21. [21]

      BRIELLE E S, ARKIN I T. J. Phys. Chem. Lett., 2018, 9(14):4059-4065.

    22. [22]

      BI X, MIAO K, WEI L. J. Am. Chem. Soc., 2022, 144(19):8504-8514.

    23. [23]

      DONALDSON S H, VALTINER M, GEBBIE M A, HARADA J, ISRAELACHVILI J N. Soft Matter, 2013, 9(21):5231-5238.

    24. [24]

      KYCIA A H, WANG J, MERRILL A R, LIPKOWSKI J. Langmuir, 2011, 27(17):10867-10877.

    25. [25]

      VAKUROV A, GALLUZZI M, PODESTÀ A, GAMPER N, NELSON A L, CONNELL S D A. ACS Nano, 2014, 8(4):3242-3250.

    26. [26]

      STOODLEY R, BIZZOTTO D. Analyst, 2003, 128(6):552-561.

    27. [27]

      BI H, WANG X, HAN X, VOÏTCHOVSKY K. Langmuir, 2018, 34(32):9561-9571.

    28. [28]

      VOÏTCHOVSKY K, GIOFRÈ D, JOSÉ SEGURA J, STELLACCI F, CERIOTTI M. Nat. Commun., 2016, 7:13064.

    29. [29]

      TREWBY W, LIVESEY D, VOÏTCHOVSKY K. Soft Matter, 2016, 12(9):2642-2651.

    30. [30]

      WANG X, ZHANG Y, BI H, HAN X. RSC Adv., 2016, 6(76):72821-72826.

    31. [31]

      PIANTANIDA L, BOLT H L, ROZATIAN N, COBB S L, VOÏTCHOVSKY K. Biophys. J., 2017, 113(2):426-439.

    32. [32]

      SCHNEIDER C A, RASBAND W S, ELICEIRI K W. Nat. Methods, 2012, 9(7):671-675.

    33. [33]

      MCKIERNAN A E, RATTO T V, LONGO M L. Biophys. J., 2000, 79(5):2605-2615.

    34. [34]

      ZHANG Y, WANG X, MA S, JIANG K, HAN X. RSC Adv., 2016, 6(14):11325-11328.

    35. [35]

      ZHOU Y, RAPHAEL R M. Biophys. J., 2007, 92(7):2451-2462.

    36. [36]

      WANG B, ZHANG L, BAE S C, GRANICK S. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(47):18171-18175.

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    3. [3]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    4. [4]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    9. [9]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    12. [12]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    13. [13]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

Metrics
  • PDF Downloads(6)
  • Abstract views(856)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return