Citation: BI Hong-Mei,  GUO Liu-Chun,  ZHANG Ying-Mei,  ZENG Xin-Ru,  XU Liu-Yi. Assembly of Lipid Membrane in Salt Solution and Structure Transformation Induced by Electric Field[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 621-628. doi: 10.19756/j.issn.0253-3820.221466 shu

Assembly of Lipid Membrane in Salt Solution and Structure Transformation Induced by Electric Field

  • Corresponding author: BI Hong-Mei, hongmei_bi@126.com
  • Received Date: 20 September 2022
    Revised Date: 23 December 2022

    Fund Project: Supported by the Natural Science Foundation of Guangdong Province (Nos. 2020A1515010522, 2022A1515012070), the Characteristic Innovation Projects of Universities in Guangdong Province (No. 2019KTSCX109) and the Projects of Talents Recruitment of GDUPT (No. 2019rc114).

  • The nanoscale organisation and transformation of self-assembled lipid membranes is central to the biological function of cell analysis and bionic structure construction as well as the biosensor research. While lots of work have focused on chemical interactions of component within the membrane, limited results address the impact of a trans-membrane potential on the molecular behaviour of the lipids and the related effects, especially in physiological media solutions. Here, in a salt solution that was isotonic to the physiological medium and utilizing a combination of atomic force microscopy (AFM) and fluorescence recovery after photobleaching (FRAP) techniques, the nanoscale molecular arrangement, assemble of neutral and charged lipids at the surface of highly ordered pyrolytic graphite (HOPG) and its structure transition under electrical potentials were studied. The results showed that these lipids were spread on HOPG in the form of monolayers at gel-phase because of the hydrophobic effect between substrate and lipid legs at room temperature. These lipids further assembled to form nanoscale semimicellar structures and exhibited corrugations morphology in AFM images. When a moderate electric field (±1.0 V) was applied on HOPG substrate, it was found to play a major role in inducing the arrangement of lipid molecules and structural transformation, while interfacial solvation forces and ion effects played a minor role. This work provided reference for the simulation of bioelectrochemical devices and the development of phospholipidbased macromolecule laboratory chips.
  • 加载中
    1. [1]

      CHEETHAM M R, BRAMBLE J P, MCMILLAN D G G, KRZEMINSKI L, HAN X, JOHNSON B R G, BUSHBY R J, OLMSTED P D, JEUKEN L J C, MARRITT S J, BUTT J N, EVANS S D. J. Am. Chem. Soc., 2011, 133(17):6521-6524.

    2. [2]

      STRAHL H, HAMOEN L W. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(27):12281-12286.

    3. [3]

      NAJBAUER E E, TEKWANI MOVELLAN K, GILLER K, BENZ R, BECKER S, GRIESINGER C, ANDREAS L B. J. Am. Chem. Soc., 2022, 144(7):2953-2967.

    4. [4]

      HAN X, CHEETHAM M R, SHEIKH K, OLMSTED P D, BUSHBY R J, EVANS S D. Integr. Biol., 2009, 1(2):205-211.

    5. [5]

      PLUHACKOVA K, BÖCKMANN R A. J. Phys.:Condens. Matter, 2015, 27(32):323103.

    6. [6]

      FUENTES N R, SALINAS M L, KIM E, CHAPKIN R S. Biochim. Biophys. Acta, Biomembr., 2017, 1859(9):1668-1678.

    7. [7]

      HAN X, CRITCHLEY K, ZHANG L, PRADEEP S N D, BUSHBY R J, EVANS S D. Langmuir, 2007, 23(3):1354-1358.

    8. [8]

      HAN X, PRADEEP S, CRITCHLEY K, SHEIKH K, BUSHBY R, EVANS S. Chem. -Eur. J., 2007, 13(28):7957-7964.

    9. [9]

      BAO P, CARTRON M L, SHEIKH K H, JOHNSON B R G, HUNTER C N, EVANS S D. Chem. Commun., 2017, 53(30):4250-4253.

    10. [10]

      EL-BEYROUTHY J, MAKHOUL-MANSOUR M M, FREEMAN E C. ACS Appl. Mater. Interfaces, 2022, 14(4):6120-6130.

    11. [11]

      ZHAO G, LI H, GAO J, CAI M, XU H, SHI Y, WANG H, WANG H. Anal. Chem., 2021, 93(42):14113-14120.

    12. [12]

      DI LEONE S, KYROPOULOU M, KÖCHLIN J, WEHR R, MEIER W P, PALIVAN C G. Langmuir, 2022, 38(21):6561-6570.

    13. [13]

      BEASLEY M, FRAZEE N, GROOVER S, VALENTINE S J, MERTZ B, LEGLEITER J. J. Phys. Chem. B, 2022, 126(16):3067-3081.

    14. [14]

      LEBÈGUE E, SMIDA H, FLINOIS T, VIÉ V, LAGROST C, BARRIÈRE F. J. Electroanal. Chem., 2018, 808:286-292.

    15. [15]

      JUHANIEWICZ J, SEK S. Electrochim. Acta, 2015, 162:53-61.

    16. [16]

      ABBASI F, LEITCH J J, SU Z F, SZYMANSKI G, LIPKOWSKI J. Electrochim. Acta, 2018, 267:195-205.

    17. [17]

      LI M, CHEN M, SHEEPWASH E, BROSSEAU C L, LI H, PETTINGER B, GRULER H, LIPKOWSKI J. Langmuir, 2008, 24(18):10313-10323.

    18. [18]

      CHEN M, LI M, BROSSEAU C L, LIPKOWSKI J. Langmuir, 2009, 25(2):1028-1037.

    19. [19]

      ZIMMERMANN R, KÜTTNER D, RENNER L, KAUFMANN M, ZITZMANN J, MÜLLER M, WERNER C. Biointerphases, 2009, 4(1):1-6.

    20. [20]

      SU Z F, SHODIEV M, LEITCH J J, ABBASI F, LIPKOWSKI J. Langmuir, 2018, 34(21):6249-6260.

    21. [21]

      BRIELLE E S, ARKIN I T. J. Phys. Chem. Lett., 2018, 9(14):4059-4065.

    22. [22]

      BI X, MIAO K, WEI L. J. Am. Chem. Soc., 2022, 144(19):8504-8514.

    23. [23]

      DONALDSON S H, VALTINER M, GEBBIE M A, HARADA J, ISRAELACHVILI J N. Soft Matter, 2013, 9(21):5231-5238.

    24. [24]

      KYCIA A H, WANG J, MERRILL A R, LIPKOWSKI J. Langmuir, 2011, 27(17):10867-10877.

    25. [25]

      VAKUROV A, GALLUZZI M, PODESTÀ A, GAMPER N, NELSON A L, CONNELL S D A. ACS Nano, 2014, 8(4):3242-3250.

    26. [26]

      STOODLEY R, BIZZOTTO D. Analyst, 2003, 128(6):552-561.

    27. [27]

      BI H, WANG X, HAN X, VOÏTCHOVSKY K. Langmuir, 2018, 34(32):9561-9571.

    28. [28]

      VOÏTCHOVSKY K, GIOFRÈ D, JOSÉ SEGURA J, STELLACCI F, CERIOTTI M. Nat. Commun., 2016, 7:13064.

    29. [29]

      TREWBY W, LIVESEY D, VOÏTCHOVSKY K. Soft Matter, 2016, 12(9):2642-2651.

    30. [30]

      WANG X, ZHANG Y, BI H, HAN X. RSC Adv., 2016, 6(76):72821-72826.

    31. [31]

      PIANTANIDA L, BOLT H L, ROZATIAN N, COBB S L, VOÏTCHOVSKY K. Biophys. J., 2017, 113(2):426-439.

    32. [32]

      SCHNEIDER C A, RASBAND W S, ELICEIRI K W. Nat. Methods, 2012, 9(7):671-675.

    33. [33]

      MCKIERNAN A E, RATTO T V, LONGO M L. Biophys. J., 2000, 79(5):2605-2615.

    34. [34]

      ZHANG Y, WANG X, MA S, JIANG K, HAN X. RSC Adv., 2016, 6(14):11325-11328.

    35. [35]

      ZHOU Y, RAPHAEL R M. Biophys. J., 2007, 92(7):2451-2462.

    36. [36]

      WANG B, ZHANG L, BAE S C, GRANICK S. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(47):18171-18175.

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    3. [3]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    4. [4]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    5. [5]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Cuiping HEZhuxuan LIYuqing SUNJie LIUShicheng XUZhanchao WU . Ca2+ doping induced crystal phase transition and spectral regulation of Ba3P4O13: Eu2+ phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2299-2306. doi: 10.11862/CJIC.20250074

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    13. [13]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    14. [14]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    15. [15]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    16. [16]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    17. [17]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    19. [19]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    20. [20]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

Metrics
  • PDF Downloads(14)
  • Abstract views(1284)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return