Citation: LI Yu-Yan,  ZHANG Hong-Yan,  LIU Wen-Dong,  SHAO Ming-Zheng,  ZHANG Rui-Zhong,  ZHANG Li-Bing. Activated DNA Nanoprobes for Biosensing and Precision Imaging of MicroRNA in Living Cells[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 811-820. doi: 10.19756/j.issn.0253-3820.221426 shu

Activated DNA Nanoprobes for Biosensing and Precision Imaging of MicroRNA in Living Cells

  • Corresponding author: ZHANG Rui-Zhong,  ZHANG Li-Bing, 
  • Received Date: 19 August 2022
    Revised Date: 29 December 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21904095, 22004089).

  • The identification and detection of new biomarkers have promoted the rapid development of highperformance detection technologies. MicroRNA (miRNA) has gradually become a specific biomarker for cancer diagnosis and prognosis, and the detection of disease-related miRNA is of great significance for improving the accuracy of disease diagnosis. In recent years, DNA fluorescent nanoprobes have gradually become an effective tool for monitoring and analyzing miRNA and dynamic changes in cells and organisms. However, traditional DNA nanoprobes are limited in obtaining high precision and resolution imaging signals due to the interference of biological autofluorescence, off-target effect and lack of temporal and spatial control. Activated DNA nanoprobes, as a newly developed paradigm, have demonstrated good potential to overcome these limitations by modulating the imaging and sensing properties through exogenous or endogenous factors. Here, we reviewed the recent progress in the design and construction of activated DNA nanoprobes and the improvement of miRNA bioimaging and sensing performance in complex biological systems, as well as the development prospects and challenges of activated DNA nanoprobes.
  • 加载中
    1. [1]

      JET T, GINES G, RONDELEZ Y, TALY V. Chem. Soc. Rev., 2021, 50(6):4141-4161.

    2. [2]

      CHEN C Z, LI L, LODISH H F, BARTEL D P. Science, 2004, 303(5654):83-86.

    3. [3]

      BRENNECKE J, HIPFNER D R, STARK A, RUSSELL R B, COHEN S M. Cell, 2003, 113(1):25-36.

    4. [4]

      KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. Nucleic Acids Res., 2019, 47(D1):D155-D162.

    5. [5]

      DOSTIE J, MOURELATOS Z, YANG M, SHARMA A, DREYFUSS G. RNA, 2003, 9(2):180-186.

    6. [6]

      WANG Y, KEYS D N, AU-YOUNG J K, CHEN C. J. Cell. Physiol., 2009, 218(2):251-255.

    7. [7]

      XU P, VERNOOY S Y, GUO M, HAY B A. Curr. Biol., 2003, 13(9):790-795.

    8. [8]

      AMBROS V. Cell, 2003, 113(6):673-676.

    9. [9]

      DUTTA R K, CHINNAPAIYAN S, UNWALLA H. Mol. Ther. Nucleic Acids, 2019, 18:413-431.

    10. [10]

      XIAO K, LU D, HOEPFNER J, SANTER L, GUPTA S, PFANNE A, THUM S, LENDERS M, BRAND E, NORDBECK P, THUM T. Sci. Rep., 2019, 9:15277.

    11. [11]

      PENG H, NEWBIGGING A M, REID M S, UPPAL J S, XU J, ZHANG H, LE X C. Anal. Chem., 2020, 92(1):292-308.

    12. [12]

      LIANG C P, MA P Q, LIU H, GUO X, YIN B C, YE B C. Angew. Chem. Int. Ed., 2017, 56(31):9077-9081.

    13. [13]

      PRITCHARD C C, CHENG H H, TEWARI M. Nat. Rev. Genet., 2012, 13(5):358-369.

    14. [14]

      DONG H, LEI J, DING L, WEN Y, JU H, ZHANG X. Chem. Rev., 2013, 113(8):6207-6233.

    15. [15]

      YANG F, LU H, MENG X, DONG H, ZHANG X. Small, 2022, 18(10):2106281.

    16. [16]

      OBERNOSTERER G, MARTINEZ J, ALENIUS M. Nat. Protoc., 2007, 2(6):1508-1514.

    17. [17]

      KISHI J Y, LAPAN S W, BELIVEAU B J, WEST E R, ZHU A, SASAKI H M, SAKA S K, WANG Y, CEPKO C L, YIN P. Nat. Methods, 2019, 16(6):533-544.

    18. [18]

      LACROIX A, SLEIMAN H F. ACS Nano, 2021, 15(3):3631-3645.

    19. [19]

    20. [20]

      SUN J, SUN X. TrAC, Trends Anal. Chem., 2020, 127:11590.

    21. [21]

      CHEN J, YANG H H, YIN W, ZHANG Y, MA Y, CHEN D, XU Y, LIU S Y, ZHANG L, DAI Z, ZOU X. Anal. Chem., 2019, 91(7):4625-4631.

    22. [22]

      YUE S, SONG X, SONG W, BI S. Chem. Sci., 2019, 10(6):1651-1658.

    23. [23]

      CHEN F, BAI M, CAO K, ZHAO Y, CAO X, WEI J, WU N, LI J, WANG L, FAN C, ZHAO Y. ACS Nano, 2017, 11(12):11908-11914.

    24. [24]

      YURKE B, TURBERFIELD A J, MILLS JR A P, SIMMEL F C, NEUMANN J L. Nature, 2000, 406(6796):605-608.

    25. [25]

      TIAN Y, MAO C. J. Am. Chem. Soc., 2004, 126(37):11410-11411.

    26. [26]

      WICKHAM S F J, BATH J, KATSUDA Y, ENDO M, HIDAKA K, SUGIYAMA H, TURBERFIELD A J. Nat. Nanotechnol., 2012, 7(3):169-173.

    27. [27]

      HUANG F, LIN M, DUAN R, LOU X, XIA F, WILLNER I. Nano Lett., 2018, 18(8):5116-5123.

    28. [28]

      CHEGLAKOV Z, CRONIN T M, HE C, WEIZMANN Y. J. Am. Chem. Soc., 2015, 137(19):6116-6119.

    29. [29]

      PENG H Y, LI X F, ZHANG H, LE X C. Nat. Commun., 2017, 8:14378.

    30. [30]

      XUE C, ZHANG S X, OUYANG C H, CHANG D, SALENA B J, LI Y, WU Z S. Angew. Chem. Int. Ed., 2018, 57(31):9739-9743.

    31. [31]

      ZHANG L, JEAN S R, LI X, SACK T, WANG Z, AHMED S, CHAN G, DAS J, ZARAGOZA A, SARGENT E H, KELLEY S O. Nano Lett., 2018, 18(10):6222-6228.

    32. [32]

      YI J T, CHEN T T, HUO J, CHU X. Anal. Chem., 2017, 89(22):12351-12359.

    33. [33]

      YANG H, WANG C, XU E, WEI W, LIU Y, LIU S. Anal. Chem., 2021, 93(16):6567-6572.

    34. [34]

      MENG X, WANG H, YANG M, LI J, YANG F, ZHANG K, DONG H, ZHANG X. Anal. Chem., 2021, 93(3):1693-1701.

    35. [35]

      LI C Y, LIU J X, YUHENG L, GAO J L, CHEN Y L, HE J W, XIN M K, LIU D, ZHENG B, SUN X. Anal. Chem., 2022, 94(13):5450-5459.

    36. [36]

      CHEN M, DUAN R, XU S, DUAN Z, YUAN Q, XIA F, HUANG F. Anal. Chem., 2021, 93(48):16264-16272.

    37. [37]

      ZHOU H, JIANG Y, ZHAO W, ZHANG S. ACS Appl. Mater. Interfaces, 2022, 14(11):13070-13078.

    38. [38]

      SHEN Y, LI Z, WANG G, MA N. ACS Sens., 2018, 3(2):494-503.

    39. [39]

      ZHAO J, LI Z, SHAO Y, HU W, LI L. Angew. Chem. Int. Ed., 2021, 60(33):17937-17941.

    40. [40]

      ZHAO T, SUN X, CHEN J, LI D, CAO W, CHEN S, YIN Y, XU S, LUO X. Anal. Chem., 2022, 94(13):5399-5405.

    41. [41]

      ZHAO T, GAO Y, WANG J, CUI Y, NIU S, XU S, LUO X. Anal. Chem., 2021, 93(36):12329-12336.

    42. [42]

      LU H, YANG F, LIU B, ZHANG K, CAO Y, DAI W, LI W, DONG H. Nanoscale Horiz., 2019, 4(2):472-479.

    43. [43]

      XIAN L, GE H, XU N, XU F, YAO Q, FAN J, LONG S, PENG X. Ind. Eng. Chem. Res., 2020, 59(47):20582-20590.

    44. [44]

      ZHANG K, MENG X, YANG Z, CAO Y, CHENG Y, WANG D, LU H, SHI Z, DONG H, ZHANG X. Adv. Mater., 2019, 31(12):1807888.

    45. [45]

      YANG Z, LIU B, HUANG T, XIE B P, DUAN W J, LI M M, CHEN J X, CHEN J, DAI Z. Anal. Chem., 2022, 94(22):8014-8023.

    46. [46]

      HU H, ZHOU F, WANG B, CHANG X, DAI T, TIAN R, WAN Y, WANG X, WANG G. Nanoscale, 2021, 13(3):1863-1868.

    47. [47]

      LIU X, WANG X, YE S, LI R, LI H. ACS Appl. Mater. Interfaces, 2021, 13(24):27825-27835.

    48. [48]

      MENG X, ZHANG K, YANG F, DAI W, LU H, DONG H, ZHANG X. Anal. Chem., 2020, 92(12):8333-8339.

    49. [49]

      LI M, ZHAO J, CHU H, MI Y, ZHOU Z, DI Z, ZHAO M, LI L. Adv. Mater., 2019, 31(45):1804745.

    50. [50]

      GAO J L, LIU Y H, ZHENG B, LIU J X, FANG W K, LIU D, SUN X M, TANG H W, LI C Y. ACS Appl. Mater. Interfaces, 2021, 13(27):31485-31494.

    51. [51]

      WANG W, SATYAVOLU N S R, WU Z, ZHANG J R, ZHU J J, LU Y. Angew. Chem. Int. Ed., 2017, 56(24):6798-6802.

    52. [52]

      ZHAO J, CHU H, ZHAO Y, LU Y, LI L. J. Am. Chem. Soc., 2019, 141(17):7056-7062.

    53. [53]

      LIU C, QI F, WEN F, LONG L, LIU A, YANG R. Methods Appl. Fluoresc., 2018, 6(2):024001.

    54. [54]

      YAN N, LIN L, XU C, TIAN H, CHEN X. Small, 2019, 15(41):e1903016.

    55. [55]

      DEIRRAM N, ZHANG C, KERMANIYAN S S, JOHNSTON A P R, SUCH G K. Macromol. Rapid Commun., 2019, 40(10):e1800917.

    56. [56]

      DI Z, ZHAO J, CHU H, XUE W, ZHAO Y, LI L. Adv. Mater., 2019, 31(33):e1901885.

    57. [57]

      JIANG Y, ZHOU H, ZHAO W, ZHANG S. Anal. Chem., 2022, 94(18):6771-6780.

    58. [58]

      SHI X R, JI L A, HU Y Y, GU J Y, WANG L M, LU W W, MENG J L, DU Y, HUANG L Z, NIE D X, YU Y Y. Sens. Actuators, B, 2022, 363:131848.

    59. [59]

      WANG Y, CHEN J, LIANG X, HAN H, WANG H, YANG Y, LI Q. Mol. Pharm., 2017, 14(7):2323-2332.

    60. [60]

      DI VIRGILIO F, SARTI A C, FALZONI S, DE MARCHI E, ADINOLFI E. Nat. Rev. Cancer, 2018, 18(10):601-618.

    61. [61]

      GODET I, SHIN Y J, JU J A, YE I C, WANG G, GILKES D M. Nat. Commun., 2019, 10(1):4862.

    62. [62]

      LI J, LIU S, WANG J, LIU R, YANG X, WANG K, HUANG J. Nucleic Acids Res., 2022, 50(7):e40.

    63. [63]

      WANG Z Q, DING T, WANG L C, WANG S, ZHOU M Z, ZHANG J X, CAI K Y. Nano Res., 2022, 15(2):845-857.

    64. [64]

      MENG X, DAI W, ZHANG K, DONG H, ZHANG X. Chem. Sci., 2018, 9(5):1184-1190.

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(13)
  • Abstract views(1665)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return