Citation: WU Yi,  SHAO Si-Meng,  LI Meng-Yuan,  WAN Xi-Lin,  ZHANG Zhe,  YANG Hong-Mei. Investigation of Interaction Between RCA120 and Ginseng Oligosaccharides by Ultra-High Performance Liquid Chromatography Coupled with Orbitrap Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 112-119. doi: 10.19756/j.issn.0253-3820.221420 shu

Investigation of Interaction Between RCA120 and Ginseng Oligosaccharides by Ultra-High Performance Liquid Chromatography Coupled with Orbitrap Mass Spectrometry

  • Corresponding author: YANG Hong-Mei, yanghm0327@sina.cn
  • Received Date: 15 August 2022
    Revised Date: 27 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.82074548), the Science and Technology Development Planning Project of Jilin Province, China (No.20220623026TC) and the Health Technology Innovation Project of Jilin Province, China (No.2021JC075).

  • A method was developed for screening protein binders from complicated ginseng samples by a streptavidin-coated 96-well plate format coupled with ultra-high performance liquid chromatography-orbitrap mass spectrometry (UHPLC-Orbitrap-MS). The Ricinus communis agglutinin 120 (RCA 120) coated 96-well plate and lysozyme coated 96-well plate (as control) were incubated with oligosaccharide standards respectively, and the compounds with the decreased peak areas in experimental group compared to those in the control group were detected as binders by UHPLC-ESI-MS. The factors such as incubation time, incubation temperature, and buffer, which might affect the binding affinity and reproducibility, were optimized. The potential of the approach was examined using the extracts of white ginseng, American ginseng and red ginseng. Three disaccharides and two trisaccharides were screened out from the extracts of white ginseng. As for the extracts of American ginseng, two disaccharides and two trisaccharides were observed to bind to RCA120. While no binders were detected in the extracts of red ginseng. Significant differences were observed in the relative binding degrees (RBDs) of the detected oligosaccharides in white ginseng and American ginseng binding to RCA 120. To our knowledge, it's the first time to reveal the differences and analogies in RCA 120-binding capabilities of oligosaccharides between the extracts of white ginseng and American ginseng, indicating the efficiency of the developed method for analysis of complicated samples.
  • 加载中
    1. [1]

    2. [2]

      CHUNG I M, KIM J W, SEGUIN P, JUN Y M, KIM S H. Food Chem., 2012, 130(1):73-83.

    3. [3]

      LUO D, FANG B. Carbohydr. Polym., 2008, 72(3):376-381.

    4. [4]

      QI L W, WANG H Y, ZHANG H, WANG C Z, LI P, YUAN C S. J. Chromatogr. A, 2012, 1230:93-99.

    5. [5]

      QIU Y, LU X, PANG T, MA C, LI X, XU G. J. Sep. Sci., 2008, 31(19):3451-3457.

    6. [6]

      JIAO L, ZHANG X, LI B, LIU Z, WANG M, LIU S. Int. J. Biol. Macromol., 2014, 65:229-233.

    7. [7]

      XU T, SHEN X, YU H, SUN L, LIN W, ZHANG C. J. Ginseng Res., 2016, 40(3):211-219.

    8. [8]

      VARKI A. Glycobiology, 1993, 3(2):97-130.

    9. [9]

      DAI Z, KAWDE A N, XIANG Y, LA BELLE J T, GERLACH J, BHAVANANDAN V P, JOSHI L, WANG J. J. Am. Chem. Soc., 2006, 128(31):10018-10019.

    10. [10]

      LU W, PIETERS R J. Expert Opin. Drug Discov., 2019, 14(4):387-395.

    11. [11]

      MIURA R, ETHELL I M, YAMAGUCHI Y. J. Neurochem., 2001, 76(2):413-424.

    12. [12]

      COHEN M. Biomolecules, 2015, 5(3):2056-2072.

    13. [13]

      LINMAN M J, TAYLOR J D, YU H, CHEN X, CHENG Q. Anal. Chem., 2008, 80(11):4007-4013.

    14. [14]

      NAKAJIMA K, ODA Y, KINOSHITA M, KAKEHI K. J. Proteome Res., 2003, 2(1):81-88.

    15. [15]

      BELLAPADRONA G, TESLER A B, GRVNSTEIN D, HOSSAIN L H, KIKKERI R, SEEBERGER P H, VASKEVICH A, RUBINSTEIN I. Anal. Chem., 2012, 84(1):232-240.

    16. [16]

      LIANG P H, WANG S K, WONG C H. J. Am. Chem. Soc., 2007, 129(36):11177-11184.

    17. [17]

      LIANG A, DESAI U R. Methods Mol. Biol., 2015, 1229:355-375.

    18. [18]

    19. [19]

      KITOVA E N, EL-HAWIET A, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2014, 25(11):1908-1916.

    20. [20]

      EL-HAWIET A, CHEN Y, SHAMS-UD-DOHA K, KITOVA E N, KITOV P I, BODE L, HAGE N, FALCONE F H, KLASSEN J S. Analyst, 2018, 143(2):536-548.

    21. [21]

      YANG H, YAO W, WANG Y, SHI L, SU R, WAN D B, XU N, LIAN W, CHEN C, LIU S. Analyst, 2017, 142(4):670-675.

    22. [22]

      JEONG D, LEE W Y. J. Electroanal. Chem., 2021, 903:115846.

    23. [23]

      NARASIMHAN S, FREED J C, SCHACHTER H. Carbohydr. Res., 1986, 149(1):65-83.

    24. [24]

      YANG Y, CUI X K, ZHONG M, LI Z J. Carbohydr. Res., 2012, 361:189-194.

    25. [25]

      NORBERG O, DENG L, AASTRUP T, YAN M, RAMSTRÖM O. Anal. Chem., 2011, 83(3):1000-1007.

    26. [26]

      ZHOU S, XU J, KONG M, YIP K M, XU J, SHEN H, ZHAO Z, LI S, CHEN H. J. Pharm. Biomed. Anal., 2017, 145:59-70.

  • 加载中
    1. [1]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    5. [5]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    13. [13]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    14. [14]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    15. [15]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    18. [18]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    20. [20]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(11)
  • Abstract views(1191)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return