Citation: JIANG Chun-Feng,  XUE Guang-Hui,  ZHANG Jin-Qiu,  FU Li-Juan,  GAO Ying,  GAO Lu. Study on Antidepressant Mechanism of Chaihuyujinxiang Granules Based on Ultra-High Performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 579-588. doi: 10.19756/j.issn.0253-3820.221413 shu

Study on Antidepressant Mechanism of Chaihuyujinxiang Granules Based on Ultra-High Performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Mass Spectrometry

  • Corresponding author: GAO Ying,  GAO Lu, 
  • Received Date: 12 August 2022
    Revised Date: 2 December 2022

    Fund Project: Supported by the Jilin Provincial Science and Technology Development Program (No.20210204061YY).

  • The treatment mechanism of depression of model mice induced by chronic unpredictable mild stress (CUMS) using Chaihuyujinxiang granules (CHYJX) was investigated by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), which laid a theoretical foundation for the clinical treatment of depression using CHYJX. A total of 1266 endogenous metabolites were identified in mouse plasma. Based on univariate statistical analysis, there were significant differences in metabolites between the blank group and the model group, and between the model group and the CHYJX treatment group. The results of principal component analysis (PCA) of multidimensional statistical analysis showed that there was a clear trend of difference between the blank group, the model group and the CHYJX treatment group. The orthogonal partial least squares discriminant analysis method (OPLS-DA) could clearly distinguish the blank group and the model group, and the model group and the CHYJX treatment group, and 57 and 89 differential metabolites were screened out, respectively, of which 13 differential metabolites had opposite trends in the two contrast modes. The pathway enrichment analysis of these 13 differential metabolites showed that GABAergic synapses, neural active ligand receptor interactions, synaptic vesicle circulation, 5-hydroxytryptaminergic and dopaminergic synapses, sphingolipid metabolism, phenylalanine and tyrosine, tryptophan biosynthesis, and phenylalanine metabolic pathway had significant changes. The pathogenesis of depression was closely related to neural activity. The results of this study indicated that the mechanism of CHYJX in the treatment of CUMS and solitary-induced depression model mice was closely related to these eight signaling pathways.
  • 加载中
    1. [1]

      ABDEL-BAKKY M, AMIN E, FARIS T, ABDELLATIF A. Mol. Med. Rep., 2021, 24(6):839.

    2. [2]

      DUDEK K A, DION-ALBERT L, KAUFMANN F N, TUCK E, LEBEL M, MENARD C. Eur. J. Neurosci., 2021, 53(1):183-221.

    3. [3]

      WANG C, LIN H, YANG N, WANG H, ZHAO Y, LI P, LIU J, WANG F. Molecules, 2019, 24(9):1712.

    4. [4]

    5. [5]

      MARCHEV A S, VASILEVA L V, AMIROVA K M, SAVOVA M S, BALCHEVA-SIVENOVA Z P, GEORGIEV M I. Cell. Mol. Life Sci., 2021, 78(19-20):6487-6503.

    6. [6]

      DAI W, FENG K, SUN X, XU L, WU S, RAHMAND K, JIA D, HAN T. J. Ethnopharmacol., 2022, 285:114692.

    7. [7]

    8. [8]

      XIAO Z, CAO Z, YANG J, JIA Z, DU Y, SUN G, LU Y, PEI L. Biochem. Pharmacol., 2021, 190:114594.

    9. [9]

      CHEN H, MA Y, CHEN M, CHEN J, CHEN J. Ann. Palliat. Med., 2021, 10(7):8015-8023.

    10. [10]

      GUAN Y, WANG J, WU X, SONG L, WANG Y, GONG M, LI B. Brain Res., 2021, 1772:147661.

    11. [11]

      LI L F, LU J, LI X M, XU C L, YANG J, QU R, MA S P. Fitoterapia, 2012, 83(1):93-103.

    12. [12]

      ZHANG H, XUE X, PAN J, SONG X, CHANG X, MAO Q, LU Y, ZHAO H, WANG Y, CHI X, WANG S, MA K. Chin. Med., 2021, 16(1):107.

    13. [13]

      CHAPMAN C A, NUWER J L, JACOB T C. Front. Synaptic Neurosci., 2022, 14:911020.

    14. [14]

      WEI J, LIU J, LIANG S, SUN M, DUAN J. Int. J. Nanomed., 2020, 15:4407-4415.

    15. [15]

      YOO H, KIM H J, YANG S H, SON G H, GIM J A, LEE H W, KIM H. Mol. Cells, 2022, 45(5):306-316.

    16. [16]

      AYUB M, JIN H K, BAE J. Int. J. Mol. Sci., 2021, 22(14):7353.

    17. [17]

      MUHLE C, WAGNER C J, FARBER K, RICHTER-SCHMIDINGER T, GULBINS E, LENZ B, KORNHUBER J. J. Clin. Med., 2019, 8(6):846.

    18. [18]

      JADDOA E, MASANIA J, MASIERO E, SGAMMA T, ARROO R, SILLENCE D, ZETTERSTRÖM T. J. Psychopharmacol., 2020, 34(7):716-725.

    19. [19]

      BLIER P. J. Clin. Psychiatry, 2016, 77(3):e319.

    20. [20]

      SHARMA A, CASTELLANI R J, SMITH M A, MURESANU D F, DEY P K, SHARMA H S. Int. Rev. Neurobiol., 2019, 146:1-44.

    21. [21]

      ENNIS M A, RASMUSSEN B F, LIM K, BALL R O, PENCHARZ P B, COURTNEY-MARTIN G, ELANGO R. Am. J. Clin. Nutr., 2020, 111(2):351-359.

    22. [22]

      ZHAO S, KHOO S, NG S C, CHI A. Int. J. Environ. Res. Public Health, 2022, 19(6):3321.

  • 加载中
    1. [1]

      Qian Wu Yuanxia Lv Zixuan Guo Zhihao Zhao Zhimin Zhang Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    4. [4]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    5. [5]

      Weiwei Zhang Yongxin Ren Hong Zhang Ke Lu . Current Situation and Quality Improvement Measures of Undergraduate Education in Modern Analytical Testing Technology under the “Learning, Teaching, and Practicing” Trinity Concept. University Chemistry, 2025, 40(10): 78-85. doi: 10.12461/PKU.DXHX202412006

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    8. [8]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    9. [9]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    10. [10]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    14. [14]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    15. [15]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    16. [16]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    19. [19]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(6)
  • Abstract views(987)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return