Citation: LI Li,  LI Meng,  YANG Ming-Li,  LI Hong-Lei,  ZHANG Huan,  MA Yue,  LIN Le-Er,  ZHANG Ming. Selective Detection of Calcium Folinate by Fluorescence Quenching of Nitrogen and Phosphorus Codoped Carbon Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 296-304. doi: 10.19756/j.issn.0253-3820.221407 shu

Selective Detection of Calcium Folinate by Fluorescence Quenching of Nitrogen and Phosphorus Codoped Carbon Nanoparticles

  • Corresponding author: LI Li,  ZHANG Ming, 
  • Received Date: 9 August 2022
    Revised Date: 11 December 2022

    Fund Project: Supported by the Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents Fund, the Qing Lan Project Fund of Jiangsu Province (No. KD2021qljs001), the Science and Technology Project Fund of Gaoxin District in Lianyungang (No. HZ201906), the Petrel Plan Project Fund of Lianyungang (No. 2020-QD-005), the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (Nos. 202113980012Y, 202113980014Y) and the Science and Technology Funds of Kangda College of Nanjing Medical University (Nos. KD2020KYJJZD074, KD2021KYJJZD014, KD2021KYRC003, KD2021KYRC015).

  • Nitrogen and phosphorus codoped carbon nanoparticles (N/P-CNPs) were synthesized by one-step hydrothermal method using ammonium phosphate and sodium ascorbate as raw materials, with a quantum yield of 19%. Based on the rapid and highly selective quenching of N/P-CNPs by calcium folinate (CF), a new method for quantitative determination of CF in CF injection samples was established. Under the optimal experimental conditions, the concentration of CF in the range of 0.2-108.5 μmol/L and the degree of fluorescence quenching of N/P-CNPs ((F0-F)/F0, F0 is the initial fluorescence intensity, F is the fluorescence intensity after adding CF) showed a good linear relationship. The detection limit was 0.05 μmol/L. Besides, it was verified that the fluorescence quenching mechanism of CF on N/P-CNPs was inner filter effect and static quenching effect. The established method was used to detect the content of CF in actual samples, and the obtained results were basically consistent with the results of high performance liquid chromatography, indicating that the method had good practicability and provided a new strategy for the detection of CF.
  • 加载中
    1. [1]

      TIAN N, MA W. Acta Biochim. Biophys. Sin., 2020, 52(1):101-103.

    2. [2]

      GU M, GAO Y, CHANG P. Cancers, 2021, 13(10):2429.

    3. [3]

      RUDNO-RUDZIŃSKA J, KIELAN W, GUZIŃSKI M, PŁOCHOCKI M, KULBACKA J. Appl. Sci., 2020, 10(15):5163.

    4. [4]

      HOU X, ZHANG P, DU H, CHU W, SUN R, QIN S, TIAN Y, ZHANG Z, XU F. Front. Pharmacol., 2021, 12:725583.

    5. [5]

      JIAO Y W, LIU Q, ZHAO H B, HU X Z, SUN J L, LIU X H. Evidence-Based Complementary Altern. Med., 2021, 2021:1858974.

    6. [6]

      LI G D, LIU J G. Evidence-Based Complementary Altern. Med., 2021, 2021:2280440.

    7. [7]

      WANG Z, QIN W, ZHAI Z, HUANG L, FENG J, GUO X, LIU K, ZHANG C, WANG Z, LU G, DONG S. Int. J. Cardiovasc. Imag., 2021, 37(4):1203-1213.

    8. [8]

      MAO J, DU P, YANG H, HU H, WANG S Y, WU X, CHENG Z B. Medicine, 2020, 99(14):e19420.

    9. [9]

      VEZMAR S, SCHÜSSELER P, BECKER A, BODE U, JAEHDE U. Pediatr. Blood Cancer, 2009, 52(1):26-32.

    10. [10]

      WANG Z, MU C, KANG J, HU Z. Chromatographia, 2012, 75(19-20):1211-1215.

    11. [11]

      ZHU Z, WANG F, WANG F, XI L. J. Electroanal. Chem., 2013, 708:13-19.

    12. [12]

      MOLLAEI M, GHOREISHI S M, KHOOBI A. Measurement, 2020, 152:107362.

    13. [13]

      MOLLAEI M, GHOREISHI S M, KHOOBI A. Microchem. J., 2020, 154:104653.

    14. [14]

      WANG L, WU S, SHI T, WEI W, PAN P. Chin. J. Chem. Phys., 2016, 29(6):729-734.

    15. [15]

    16. [16]

      LI X, ZHAO S, LI B, YANG K, LAN M, ZENG L. Coord. Chem. Rev., 2021, 431:213686.

    17. [17]

    18. [18]

    19. [19]

      LAGHARI S H, MEMON N, YAR KHUHAWER M, JAHANGIR T M. Curr. Anal. Chem., 2022, 18(2):145-162.

    20. [20]

      LIN L, WANG Y, XIAO Y, LIU W. Microchim. Acta, 2019, 186(3):147.

    21. [21]

      ZHAO D, ZHANG Z X, LIU X M, ZHANG R, XIAO X C. Mater. Sci. Eng., C, 2021, 119:111468.

    22. [22]

      HALLAJ T, AZIZI N, AMJADI M. Microchem. J., 2021, 162:105865.

    23. [23]

      LIU L, MI Z, HUO X, YUAN L, BAO Y, LIU Z, FENG F. Food Chem., 2022, 368:130829.

    24. [24]

      QU J, ZHANG X, LIU Y, XIE Y, CAI J, ZHA G, JING S. Microchim Acta, 2020, 187(6):355.

    25. [25]

    26. [26]

      ZHANG Z W, LIU Y H, YAN Z Y, CHEN J Q. Sens. Actuators, B, 2018, 255:986-994.

    27. [27]

      MOLAEI M J. Anal. Methods, 2020, 12(10):1266-1287.

    28. [28]

      WANG X, ZHANG S. Colloids Surf., 2022, 649:129458.

    29. [29]

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    19. [19]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(16)
  • Abstract views(2196)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return