Citation: WANG Dong-Ze,  WANG Yu-Xuan,  JIA Qiong. Application of Hypercrosslinked Polymers in Sample Pretreatment and Chromatographic Separation[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1435-1443. doi: 10.19756/j.issn.0253-3820.221363 shu

Application of Hypercrosslinked Polymers in Sample Pretreatment and Chromatographic Separation

  • Corresponding author: JIA Qiong, jiaqiong@jlu.edu.cn
  • Received Date: 20 July 2022
    Revised Date: 17 August 2022

    Fund Project: Supported by the Science and Technology Planning Project of Changchun, China (No.21ZGN35)

  • Hypercrosslinked polymers (HCPs) are a kind of porous organic polymers built from aromatic compounds via Friedel-Crafts acylation. Due to their excellent chemical stability, extremely high specific surface area, adjustable pore size, simple synthesis condition and easy functionalization, HCPs have shown great potential in sample pretreatment and chromatographic separation. In this article, the application and progress of HCPs in solid phase extraction (SPE), magnetic solid phase extraction (MSPE), solid phase microextraction (SPME), high performance liquid chromatography (HPLC) and gas chromatography (GC) are systematically reviewed. In the end, the outlook about the application of HCPs in separation science is prospected.
  • 加载中
    1. [1]

      WANG X P, LI H, QUAN K J, ZHAO L, QIU H D, LI Z G. Talanta, 2021, 225:121987.

    2. [2]

      CHEN J, GONG Z J, TANG W Y, ROW K H, QIU H D. TrAC, Trends Anal. Chem., 2021, 134:116131.

    3. [3]

    4. [4]

    5. [5]

      WANG H Q, LI Z, FENG W, JIA Q. New J. Chem., 2017, 41(21):13043-13050.

    6. [6]

      LI X M, XIONG H L, JIA Q. ACS Appl. Mater. Interfaces, 2019, 11(49):46205-46211.

    7. [7]

    8. [8]

      TAN J, CHEN W J, GUO J. Chin. Chem. Lett., 2016, 27(8):1405-1411.

    9. [9]

      LI X M, PENG Y, JIA Q. Sep. Purif. Technol., 2020, 236:116260.

    10. [10]

      HAN L X, PENG Y, MA J T, SHI Z, JIA Q. Sep. Purif. Technol., 2022, 285:120378.

    11. [11]

      LI X M, CHEN G, XU H, JIA Q. Sep. Purif. Technol., 2019, 228:115739.

    12. [12]

      SU Y, WANG Z M, LEGRAND A, AOYAMA T, MA N, WANG W T, OTAKE K, URAYAMA K, HORIKE S, KITAGAWA S, FURUKAWA S, GU C. J. Am. Chem. Soc., 2022, 144(15):6861-6870.

    13. [13]

    14. [14]

      WANG D Z, CHEN G, LI X M, JIA Q. Sep. Purif. Technol., 2019, 227:115720.

    15. [15]

      WANG D Z, LI X M, JIN X Q, JIA Q. Sep. Purif. Technol., 2019, 216:9-15.

    16. [16]

      RUEPING M, NACHTSHEIM B J. Beilstein J. Org. Chem., 2010, 6:6.

    17. [17]

      DAVANKOV V A, TSYURUPA M P. React. Polym., 1990, 13(1):27-42.

    18. [18]

      VEVERKA P, JERABEK K. React. Funct. Polym., 2004, 59(1):71-79.

    19. [19]

      FONTANALS N, MARCE R M, BORRULL F, CORMACK P A G. Polym. Chem., 2015, 6(41):7231-7244.

    20. [20]

      TAN L X, TAN B E. Chem. Soc. Rev., 2017, 46(11):3322-3356.

    21. [21]

      XU S J, LUO Y L, TAN B E. Macromol. Rapid Commun., 2013, 34(6):471-484.

    22. [22]

      HUANG J, TURNER S R. Polym. Rev., 2018, 58(1):1-41.

    23. [23]

      HE M, OU X X, WANG Y X, CHEN Z N, LI D D, CHEN B B, HU B. J. Chromatogr. A, 2020, 1609:460477.

    24. [24]

      DAVANKOV V A, ROGOZHIN S V, TSYURUPA M P. US Patent, 3729457, 1973.

    25. [25]

      GERMAIN J, FRECHET J M J, SVEC F. J. Mater. Chem., 2007, 17(47):4989-4997.

    26. [26]

      SVEC F, GERMAIN J, FRECHET J M J. Small, 2009, 5(10):1098-1111.

    27. [27]

      CJURUPA M P, LALAEV V V, DAVANKOV V A. Acta Polym., 1984, 35(6):451-455.

    28. [28]

      TSYURUPA M P, DAVANKOV V A. React. Funct. Polym., 2002, 53(2-3):193-203.

    29. [29]

      WU D C, HUI C M, DONG H C, PIETRASIK J, RYU H J, LI Z H, ZHONG M J, HE H K, KIM E K, JARONIEC M, KOWALEWSKI T, MATYJASZEWSKI K. Macromolecules, 2011, 44(15):5846-5849.

    30. [30]

      AZANOVA V V, HRADIL J. React. Funct. Polym., 1999, 41(1-3):163-175.

    31. [31]

      WOOD C D, TAN B E, TREWIN A, NIU H J, BRADSHAW D, ROSSEINSKY M J, KHIMYAK Y Z, CAMPBELL N L, KIRK R, STOECKEL E, COOPER A I. Chem. Mater., 2007, 19(8):2034-2048.

    32. [32]

      WOOD C D, TAN B E, TREWIN A, SU F, ROSSEINSKY M J, BRADSHAW D, SUN Y, ZHOU L, COOPER A I. Adv. Mater., 2008, 20(10):1916-1921.

    33. [33]

      LUO Y L, ZHANG S C, MA Y X, WANG W, TAN B E. Polym. Chem., 2013, 4(4):1126-1131.

    34. [34]

      LI B Y, GUAN Z H, YANG X J, WANG W D, WANG W, HUSSAIN I, SONG K, TAN B E, LI T. J. Mater. Chem. A, 2014, 2(30):11930-11939.

    35. [35]

      LI B Y, GONG R N, WANG W, HUANG X, ZHANG W, LI H M, HU C X, TAN B E. Macromolecules, 2011, 44(8):2410-2414.

    36. [36]

      TAN L X, LI B Y, YANG X J, WANG W X, TAN B E. Polymer, 2015, 70:336-342.

    37. [37]

      WANG H J, PAN L L, DENG W X, YANG G J, LIU X K. Polym. J., 2016, 48(7):787-792.

    38. [38]

      BHUNIA S, BANERJEE B, BHAUMIK A. Chem. Commun., 2015, 51(24):5020-5023.

    39. [39]

      ZHANG X W, YANG Y X, QIN P G, HAN L Z, ZHU W L, DUAN S F, LU M H, CAI Z W. Chin. Chem. Lett., 2022, 33(2):903-906.

    40. [40]

      YU Q W, LIU S J, ZHENG F, XIAO H M, GUAN H Y, FENG Y Q. Chin. Chem. Lett., 2020, 31(2):482-486.

    41. [41]

      KHAYAMBASHI A, CHEN L, DONG X, LI K, WANG Z P, HE L W, ANNAM S, CHEN L X, WANG Y X, SHERIDAN M V, XU C, WANG S A. Chin. Chem. Lett., 2022, 33(7):3429-3434.

    42. [42]

      FONTANALS N, MARC R M, BORRULL F. TrAC, Trends Anal. Chem., 2005, 24(5):394-406.

    43. [43]

      FONTANALS N, CORTES J, GALI M, MARCE R M, CORMACK P A G, BORRULL F, SHERRINGTON D C. J. Polym. Sci., Part A:Polym. Chem., 2005, 43(8):1718-1728.

    44. [44]

      FONTANALS N, GALIA M, CORMACK P A, MARCE R M, SHERRINGTON D C, BORRULL F. J. Chromatogr. A, 2005, 1075(1-2):51-56.

    45. [45]

      BRATKOWSKA D, FONTANALS N, BORRULL F, CORMACK P A, SHERRINGTON D C, MARCE R M. J. Chromatogr. A, 2010, 1217(19):3238-3243.

    46. [46]

      WU J J, MA R Y, HAO L, WANG C, WU Q H, WANG Z. J. Chromatogr. A, 2017, 1520:48-57.

    47. [47]

      WANG Q Q, ZHANG L H, HAO L, WANG C, WU Q H, WANG Z. J. Chromatogr. A, 2018, 1575:18-25.

    48. [48]

      LIANG X Y, WANG J T, WU Q H, WANG C, WANG Z. J. Chromatogr. A, 2018, 1538:1-7.

    49. [49]

      WANG Q Q, WANG C, WANG J M, LIU W H, HAO L, ZHOU J H, WANG Z, WU Q H. Food Chem., 2020, 317:126410.

    50. [50]

      LIU W H, WANG J T, LIU J J, HOU F Y, WU Q H, WANG C, WANG Z. J. Chromatogr. A, 2020, 1628:461470.

    51. [51]

      XU M M, WANG J M, ZHANG L H, WANG Q Q, LIU W H, AN Y J, HAO L, WANG C, WANG Z, WU Q H. J. Hazard. Mater., 2022, 429:128288.

    52. [52]

      LI A M, ZHANG Q X, ZHANG G C, CHEN J L, FEI Z H, LIU F Q. Chemosphere, 2002, 47(9):981-989.

    53. [53]

      DAVANKOV V, PAVLOVA L, TSYURUPA M, BRADY J, BALSAMO M, YOUSHA E. J. Chromatogr. B, 2000, 739(1):73-80.

    54. [54]

      LI Z B, HUANG D N, FU C, WEI B W, YU W J, DENG C H, ZHANG X M. J. Chromatogr. A, 2011, 1218(37):6232-6239.

    55. [55]

      QI H, LI Z, ZHENG H J, FU L, JI Q. Chin. Chem. Lett., 2019, 30(12):2181-2185.

    56. [56]

      QI H, JIANG L Y, JIA Q. Chin. Chem. Lett., 2021, 32(9):2629-2636.

    57. [57]

      LAURENT S, FORGE D, PORT M, ROCH A, ROBIC C, ELST L V, MULLER R N. Chem. Rev., 2008, 108(6):2064-2110.

    58. [58]

      GAO Q, LIN C Y, LUO D, SUO L L, CHEN J L, FENG Y Q. J. Sep. Sci., 2011, 34(21):3083-3091.

    59. [59]

      GUBIN A, SUKHANOV P, KUSHNIR A, SANNIKOVA N, KONOPLEVA V, NIKULINA A. J. Sep. Sci., 2021, 44(9):1978-1988.

    60. [60]

      WANG Q Q, WU J J, HAO L, WU Q H, WANG C, WANG Z. J. Sep. Sci., 2018, 41(16):3285-3293.

    61. [61]

      GAO T, WANG J M, HAO L, YANG X M, WANG C, WU Q H, WANG Z. Microchim. Acta, 2018, 185(12):554.

    62. [62]

      JIANG D D, LI Z, JIA Q. Microchim. Acta, 2019, 186(8):510.

    63. [63]

      WU M X, CHEN G, MA J T, LIU P, JIA Q. Talanta, 2016, 161:350-358.

    64. [64]

      GUO H H, SONG N Z, WANG D Z, MA J T, JIA Q. Talanta, 2019, 198:277-283.

    65. [65]

      GUO H H, CHEN G, MA J T, JIA Q. Microchim. Acta, 2019, 186(1):4.

    66. [66]

      LIU S Q, CHEN D R, ZHENG J, ZENG L W, JIANG J J, JIANG R F, ZHU F, SHEN Y, WU D C, OUYANG G F. Nanoscale, 2015, 7(40):16943-16951.

    67. [67]

      WANG W C, WANG W J, ZHANG S H, LI Z, WANG C, WANG Z. J. Chromatogr. A, 2018, 1556:47-54.

    68. [68]

      LIU S Q, HU Q K, ZHENG J, XIE L J, WEI S B, JIANG R F, ZHU F, LIU Y, OUYANG G F. J. Chromatogr. A, 2016, 1450:9-16.

    69. [69]

      MAYA F, SVEC F. Polymer, 2014, 55(1):340-346.

    70. [70]

      ZHOU Y F, ZHENG H J, MA J T, JIA Q. J. Sep. Sci., 2017, 40(7):1548-1555.

    71. [71]

      WANG H Q, ZHANG H H, WEI S G, JIA Q. J. Chromatogr. A, 2018, 1566:23-31.

    72. [72]

    73. [73]

      URBAN J, SVEC F, FRECHET J M. Anal. Chem., 2010, 82(5):1621-1623.

    74. [74]

      URBAN J, SVEC F, FRECHET J M. J. Chromatogr. A, 2010, 1217(52):8212-8221.

    75. [75]

      MAYA F, SVEC F. J. Chromatogr. A, 2013, 1317:32-38.

    76. [76]

      LV Y, LIN Z, SVEC F. Anal. Chem., 2012, 84(20):8457-8460.

    77. [77]

      KANATEVA A Y, KOROLEV A A, KURGANOV A A. J. Sep. Sci., 2021, 44(24):4395-4401.

    78. [78]

      LU C M, LIU S Q, XU J Q, DING Y J, OUYANG G F. Anal. Chim. Acta, 2016, 902:205-211.

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    4. [4]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    5. [5]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    6. [6]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

Metrics
  • PDF Downloads(21)
  • Abstract views(868)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return