Citation: QI Yu,  LU Yang,  ZHOU Qing-Qing,  KAN Zi-Tong,  YANG Long,  BAI Xue,  DONG Biao,  XU Lin. Application of High Performance Hydrogels in Wearable Sensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1699-1711. doi: 10.19756/j.issn.0253-3820.221352 shu

Application of High Performance Hydrogels in Wearable Sensors

  • Corresponding author: XU Lin, linxu@jlu.edu.cn
  • Received Date: 15 July 2022
    Revised Date: 15 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.61874049, 61822506, 11874181), the Natural Science Foundation of Jilin Province, China (Nos.20200801017GH, 20190303012SF) and the Fundamental Research Funds for the Central Universities of China.

  • With the continuous advancement of information technology, sensors are developing in the direction of flexibility, wearability and intelligence. Wearable sensors with the advantages including light weight, low modulus, low cost, high elasticity and stretch ability can meet the needs of intelligent development of the Internet of Things, and thus have received extensive attention. As a new type of flexible material, hydrogel has many advantages such as excellent mechanical properties, high flexibility, good fit with human skin and high biocompatibility, and it is expected to become a platform for a new generation of wearable sensors. However, due to the issues in stability of hydrogels, tolerance to extreme environments such as drought and cold, limitations in electrical conductivity, mechanical properties, and low integration, their applications and development in the field of wearable sensors are limited. This paper focuses on the improvement of the above issues and the applications of conductive hydrogels in wearable sensors in different fields such as strain sensing, tactile sensing, gas sensing, humidity sensing, temperature sensing, etc., and finally summarizes the existing problems of hydrogels.
  • 加载中
    1. [1]

      CONG J, ZHANG X M, CHEN K S, XU J. Sens. Actuators, B, 2002, 87(3):487-490.

    2. [2]

      THAM J C K. J. Tech. Writing Commun., 2017, 47(1):22-55.

    3. [3]

      ALRAMMOUZ R, PODLECKI J, ABBOUD P, SORLI B, HABCHI R. Sens. Actuators, A, 2018, 284:209-231.

    4. [4]

      BORGERSON S G. Foreign Affairs, 2008, 87(2):63-77.

    5. [5]

      CHENG B C, WU P Y. ACS Nano, 2021, 15(5):8676-8685.

    6. [6]

      DOHERTY S T, LEMIEUX C J, CANALLY C. Soc. Sci. Med., 2014, 106:83-92.

    7. [7]

      TRUNG T Q, DUY L T, RAMASUNDARAM S, LEE N E. Nano Res., 2017, 10(6):2021-2033.

    8. [8]

      LARA O D, LABRADOR M A. IEEE Commun. Surv. Tut., 2012, 15(3):1192-1209.

    9. [9]

      LIANG Y N, WU Z X, WEI Y M, DING Q L, ZILBERMAN M, TAO K, XIE X, WU J. Nano-micro Lett., 2022, 14(1):1-19.

    10. [10]

      World Health Organization. World Health Statistics 2016:Monitoring Health for the SDGs Sustainable Development Goals[M]. World Health Organization, 2016.

    11. [11]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D. Nature, 2016, 529(7587):509-514.

    12. [12]

      HAICK H, TANG N. ACS Nano, 2021, 15(3):3557-3567.

    13. [13]

      PRUVSS-UVSTUVN A, CORVALÁN C F. World Health Organization. Preventing Disease Through Healthy Environments:Towards an Estimate of the Environmental Burden of Disease:Executive Summary. 2006.

    14. [14]

      RODGERS M M, PAI V M, CONROY R S. IEEE Sen. J., 2014, 15(6):3119-3126.

    15. [15]

      DIEFFENDERFER J, GOODELL H, MILLS S, MCKNIGHT M, YAO S S, LIN F Y, BEPPLER E, BENT B, LEE B, MISRA V. IEEE J. Biomed. Health, 2016, 20(5):1251-1264.

    16. [16]

      HUANG S M, XU S Y, BELOPOLSKI I, LEE C C, CHANG G Q, WANG B K, ALIDOUST N, BIAN G, NEUPANE M, ZHANG C L, JIA S, BANSIL A, LIN H, HASAN M Z. Nat. Commun., 2015, 6:7373.

    17. [17]

      KIM J, CAMPBELL A S, WANG J. Talanta, 2018, 177:163-170.

    18. [18]

      BAI J H, WANG R, JU M X, ZHOU J X, ZHANG L X, JIAO T F. Sci. China Mater., 2021, 64(4):942-952.

    19. [19]

      ZHANG Y, LIANG B, JIANG Q F, LI Y, FENG Y, ZHANG L Q, ZHAO Y M, XIONG X L. Smart Mater. Struct., 2020, 29(7):075027.

    20. [20]

      LEE K Y, MOONEY D J. Chem. Rev., 2001, 101(7):1869-1880.

    21. [21]

      EL-HAFIAN E A, ELGANNOUDI E S, MAINAL A, YAHAYA A H B. Turk. J. Chem., 2010, 34(1):47-56.

    22. [22]

      CHEN Z, CHEN Y J, HEDENQVIST M S, CHEN C, CAI C, LI H, LIU H Z, FU J. J. Mater. Chem. B, 2021, 9(11):2561-2583.

    23. [23]

      CUI C, FU Q J, MENG L, HAO S W, DAI R G, YANG J. ACS Appl. Bio Mater., 2020, 4(1):85-121.

    24. [24]

      LI S N, ZHOU X, DONG Y M, LI J H. Macromol. Rapid Commun., 2020, 41(23):2000444.

    25. [25]

      ZHOU H W, LAI J L, ZHENG B H, JIN X L, ZHAO G X, LIU H B, CHEN W X, MA A, LI X S, WU Y P. Adv. Funct. Mater., 2022, 32(1):2108423.

    26. [26]

      CAI P Q, CHEN X D. ACS Mater. Lett., 2019, 1(2):285-289.

    27. [27]

      JAMAL M, AHMAD W, ANDLEEB S, JALIL F, IMRAN M, NAWAZ M A, HUSSAIN T, ALI M, RAFIQ M, KAMIL M A. J. Chin. Med. Assoc., 2018, 81(1):7-11.

    28. [28]

      RICHTER A, BUND A, KELLER M, ARNDT K F. Sens. Actuators, B, 2004, 99(2-3):579-585.

    29. [29]

      CENSI R, DI M P, VERMONDEN T, HENNINK W. J. Controlled Release, 2012, 161(2):680-692.

    30. [30]

      ZHAO S F, LI J H, CAO D X, ZHANG G P, LI J, LI K, YANG Y, WANG W, JIN Y F, SUN R. ACS Appl. Mater. Interfaces, 2017, 9(14):12147-12164.

    31. [31]

      SUN D, FENG Y F, SUN S C, YU J, JIA S Y, DANG C, HAO X, YANG J, REN W F, SUN R C, SHAO C Y, PENG F. Adv. Funct. Mater., 2022, 32(28):2201335.

    32. [32]

      WU J, WU Z X, XU H H, WU Q, LIU C, YANG B R, GUI X C, XIE X, TAO K, SHEN Y. Mater. Horiz., 2019, 6(3):595-603.

    33. [33]

      CHO B, YOON J, HAHM M G, KIM D H, KIM A R, KAHNG Y H, PARK S W, LEE Y J, PARK S G, KWON J D. J. Mater. Chem. C, 2014, 2(27):5280-5285.

    34. [34]

      WU Z X, YANG X, WU J. ACS Appl. Mater. Interfaces, 2021, 13(2):2128-2144.

    35. [35]

      ZHANG X F, MA X F, HOU T, GUO K C, YIN J Y, WANG Z G, SHU L, HE M, YAO J F. Angew. Chem., Int. Ed., 2019, 58(22):7366-7370.

    36. [36]

      CUI C, SHAO C Y, MENG L, YANG J. ACS Appl. Mater. Interfaces, 2019, 11(42):39228-39237.

    37. [37]

      JI D, PARK J M, OH M S, NGUYEN T L, SHIN H, KIM J S, KIM D, PARK H S, KIM J. Nat. Commun., 2022, 13(1):3019.

    38. [38]

      MORELLE X P, ILLEPERUMA W R, TIAN K, BAI R B, SUO Z G, VLASSAK J J. Adv. Mater., 2018, 30(35):1801541.

    39. [39]

      LIANG Y Z, LIANG H Y. Adv. Mater. Technol., 2021, 6(7):2001234.

    40. [40]

      YE Y H, ZHANG Y F, CHEN Y, HAN X S, JIANG F. Adv. Funct. Mater., 2020, 30(35):2003430.

    41. [41]

      FENG E, LI X, LI J J, YAN Z, ZHENG G C, GAO W, LI Z L, MA X X, YANG Z M. J. Mater. Chem. C, 2021, 9(43):15530-15541.

    42. [42]

      CAI C C, WEN C Y, ZHAO W Q, TIAN S, LONG Y, ZHANG X Y, SUI X J, ZHANG L, YANG J. ACS Appl. Mater. Interfaces, 2022, 14(20):23692-23700.

    43. [43]

      YUK H, ZHANG T, PARADA G A, LIU X Y, ZHAO X H. Nat. Commun., 2016, 7:12028.

    44. [44]

      NIU R, QIN Z H, JI F, XU M, TIAN X L, LI J J, YAO F L. Soft Matter, 2017, 13(48):9237-9245.

    45. [45]

      LIN P, MA S H, WANG X L, ZHOU F. Adv. Mater., 2015, 27(12):2054-2059.

    46. [46]

      SUN J Y, ZHAO X, ILLEPERUMA W R K. Nature, 2012, 489(7414):133-136.

    47. [47]

      LIU M X, LI W D, RONG J H, ZHOU C R. Colloid Polym. Sci., 2012, 290(10):895-905.

    48. [48]

      LIU M X, HUANG J D, LUO B H, ZHOU C R. Int. J. Biol. Macromol., 2015, 78:23-31.

    49. [49]

      GONG J P, KATSUYAMA Y, KUROKAWA T. Adv. Mater., 2003, 15(14):1155-1158.

    50. [50]

      GONG J P. Soft Matter, 2010, 6(12):2583-2590.

    51. [51]

      SI Y, WANG L H, WANG X Q, TANG N, YU J Y, DING B. Adv. Mater., 2017, 29(24):1700339.

    52. [52]

      KONWAR A, KALITA S, KOTOKY J, CHOWDHURY D. ACS Appl. Mater. Interfaces, 2016, 8(32):20625-20634.

    53. [53]

      LIU S J, LI L. ACS Appl. Mater. Interfaces, 2016, 8(43):29749-29758.

    54. [54]

      CHEN Q, ZHU L, ZHAO C, WANG Q M, ZHENG J. Adv. Mater., 2013, 25(30):4171-4176.

    55. [55]

      CHEN Q, ZHU L, HUANG L, CHEN H, XU K, TAN Y, WANG P X, ZHENG J. Macromolecules, 2014, 47(6):2140-2148.

    56. [56]

      JIANG H C, DUAN L J, REN X Y, GAO G H. Eur. Polym. J., 2019, 112:660-669.

    57. [57]

      HAN L, WANG M H, PRIETO-LÓPEZ L O, DENG X, CUI J X. Adv. Funct. Mater., 2020, 30(7):1907064.

    58. [58]

      NELE V, WOJCIECHOWSKI J P, ARMSTRONG J P, STEVENS M M. Adv. Funct. Mater., 2020, 30(42):2002759.

    59. [59]

      WANG C, LIU Y, QU X C, SHI B J, ZHENG Q, LIN X B, CHAO S Y, WANG C Y, ZHOU J, SUN Y. Adv. Mater., 2022, 34(16):2105416.

    60. [60]

      ZHANG X N, WANG Y J, SUN S T, HOU L, WU P Y, WU Z L, ZHENG Q. Macromolecules, 2018, 51(20):8136-8146.

    61. [61]

      JING H C, HE L, FENG J Y, FU H, GUAN S, GUO P P. Soft Matter, 2019, 15(26):5264-5270.

    62. [62]

      HUANG Y W, XIAO L Y, ZHOU J, LIU T, YAN Y Q, LONG S J, LI X F. Adv. Funct. Mater., 2021, 31(37):2103917.

    63. [63]

      WU J, WU Z X, LU X, HAN S J, YANG B R, GUI X C, TAO K, MIAO J M, LIU C. ACS Appl. Mater. Interfaces, 2019, 11(9):9405-9414.

    64. [64]

      LIAO H, GUO X L, WAN P B, YU G H. Adv. Funct. Mater., 2019, 29(39):1904507.

    65. [65]

      WU M, WANG X, XIA Y F, ZHU Y, ZHU S L, JIA C Y, GUO W Y, LI Q Q, YAN Z G. Nano Energy, 2022, 95:106967.

    66. [66]

      FENG E, LI J J, ZHENG G C, YAN Z, LI X, GAO W, MA X X, YANG Z M. ACS Sustainable Chem. Eng., 2021, 9(21):7267-7276.

    67. [67]

      SUN H L, ZHAO Y, JIAO S L, WANG C F, JIA Y P, DAI K, ZHENG G Q, LIU C T, WAN P B, SHEN C Y. Adv. Funct. Mater., 2021, 31(24):2101696.

    68. [68]

      CHEN S, SUN L J, ZHOU X J, GUO Y F, SONG J C, QIAN S H, LIU Z H, GUAN Q B, MEADE J E, LIU W G, WANG Y D, HE C L, YOU Z W. Nat. Commun., 2020, 11(1):1107.

    69. [69]

      LI S Y, LIU G Q, WEN H, LIU G Y, WANG H, YE M D, YANG Y, GUO W X, LIU Y F. Adv. Funct. Mater., 2022, 32(19):2111747.

    70. [70]

      CHORTOS A, LIU J, BAO Z N. Nat. Mater., 2016, 15(9):937-950.

    71. [71]

      ABRAIRA V E, GINTY D D. Neuron, 2013, 79(4):618-639.

    72. [72]

      LI Z K, ZHANG S M, CHEN Y H, LING H N, ZHAO L B, LUO G X, WANG X C, HARTEL M C, LIU H, XUE Y M. Adv. Funct. Mater., 2020, 30(49):2003601.

    73. [73]

      LIU Y M, WONG T H, HUANG X C, YIU C K, GAO Y Y, ZHAO L, ZHOU J K, PARK W, ZHAO Z, YAO K M. Nano Energy, 2022, 99:107442.

    74. [74]

      WU J, WU Z X, WEI Y M, DING H J, HUANG W X, GUI X C, SHI W X, SHEN Y, TAO K, XIE X. ACS Appl. Mater. Interfaces, 2020, 12(16):19069-19079.

    75. [75]

      WU J, WU Z X, HUANG W X, YANG X, LIANG Y N, TAO K, YANG B R, SHI W X, XIE X. ACS Appl. Mater. Interfaces, 2020, 12(46):52070-52081.

    76. [76]

      WU Z X, RONG L M, YANG J L, WEI Y M, TAO K, ZHOU Y B, YANG B R, XIE X, WU J. Small, 2021, 17(52):2104997.

    77. [77]

      WEI Y M, WANG H, DING Q L, WU Z X, ZHANG H, TAO K, XIE X, WU J. Mater. Horiz., 2022, 9(7):1921-1934.

    78. [78]

      GAO Y, JIA F, GAO G H. Chem. Eng. J., 2022, 430:132919.

    79. [79]

      LI T, LI L H, SUN H W, XU Y, WANG X W, LUO H, LIU Z, ZHANG T. Adv. Sci., 2017, 4(5):1600404.

    80. [80]

      WEI Y, QIAN Y Y, ZHU P H, XIANG L J, LEI C F, QIU G, WANG C Y, LIU Y K, LIU Y J, CHEN G. Cellulose, 2022, 29(7):3829-3844.

    81. [81]

      GU J F, HUANG J R, CHEN G Q, HOU L X, ZHANG J, ZHANG X, YANG X X, GUAN L H, JIANG X C, LIU H Y. ACS Appl. Mater. Interfaces, 2020, 12(36):40815-40827.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    14. [14]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    15. [15]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    16. [16]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(37)
  • Abstract views(1046)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return