Citation: QI Yu,  LU Yang,  ZHOU Qing-Qing,  KAN Zi-Tong,  YANG Long,  BAI Xue,  DONG Biao,  XU Lin. Application of High Performance Hydrogels in Wearable Sensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1699-1711. doi: 10.19756/j.issn.0253-3820.221352 shu

Application of High Performance Hydrogels in Wearable Sensors

  • Corresponding author: XU Lin, linxu@jlu.edu.cn
  • Received Date: 15 July 2022
    Revised Date: 15 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.61874049, 61822506, 11874181), the Natural Science Foundation of Jilin Province, China (Nos.20200801017GH, 20190303012SF) and the Fundamental Research Funds for the Central Universities of China.

  • With the continuous advancement of information technology, sensors are developing in the direction of flexibility, wearability and intelligence. Wearable sensors with the advantages including light weight, low modulus, low cost, high elasticity and stretch ability can meet the needs of intelligent development of the Internet of Things, and thus have received extensive attention. As a new type of flexible material, hydrogel has many advantages such as excellent mechanical properties, high flexibility, good fit with human skin and high biocompatibility, and it is expected to become a platform for a new generation of wearable sensors. However, due to the issues in stability of hydrogels, tolerance to extreme environments such as drought and cold, limitations in electrical conductivity, mechanical properties, and low integration, their applications and development in the field of wearable sensors are limited. This paper focuses on the improvement of the above issues and the applications of conductive hydrogels in wearable sensors in different fields such as strain sensing, tactile sensing, gas sensing, humidity sensing, temperature sensing, etc., and finally summarizes the existing problems of hydrogels.
  • 加载中
    1. [1]

      CONG J, ZHANG X M, CHEN K S, XU J. Sens. Actuators, B, 2002, 87(3):487-490.

    2. [2]

      THAM J C K. J. Tech. Writing Commun., 2017, 47(1):22-55.

    3. [3]

      ALRAMMOUZ R, PODLECKI J, ABBOUD P, SORLI B, HABCHI R. Sens. Actuators, A, 2018, 284:209-231.

    4. [4]

      BORGERSON S G. Foreign Affairs, 2008, 87(2):63-77.

    5. [5]

      CHENG B C, WU P Y. ACS Nano, 2021, 15(5):8676-8685.

    6. [6]

      DOHERTY S T, LEMIEUX C J, CANALLY C. Soc. Sci. Med., 2014, 106:83-92.

    7. [7]

      TRUNG T Q, DUY L T, RAMASUNDARAM S, LEE N E. Nano Res., 2017, 10(6):2021-2033.

    8. [8]

      LARA O D, LABRADOR M A. IEEE Commun. Surv. Tut., 2012, 15(3):1192-1209.

    9. [9]

      LIANG Y N, WU Z X, WEI Y M, DING Q L, ZILBERMAN M, TAO K, XIE X, WU J. Nano-micro Lett., 2022, 14(1):1-19.

    10. [10]

      World Health Organization. World Health Statistics 2016:Monitoring Health for the SDGs Sustainable Development Goals[M]. World Health Organization, 2016.

    11. [11]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D. Nature, 2016, 529(7587):509-514.

    12. [12]

      HAICK H, TANG N. ACS Nano, 2021, 15(3):3557-3567.

    13. [13]

      PRUVSS-UVSTUVN A, CORVALÁN C F. World Health Organization. Preventing Disease Through Healthy Environments:Towards an Estimate of the Environmental Burden of Disease:Executive Summary. 2006.

    14. [14]

      RODGERS M M, PAI V M, CONROY R S. IEEE Sen. J., 2014, 15(6):3119-3126.

    15. [15]

      DIEFFENDERFER J, GOODELL H, MILLS S, MCKNIGHT M, YAO S S, LIN F Y, BEPPLER E, BENT B, LEE B, MISRA V. IEEE J. Biomed. Health, 2016, 20(5):1251-1264.

    16. [16]

      HUANG S M, XU S Y, BELOPOLSKI I, LEE C C, CHANG G Q, WANG B K, ALIDOUST N, BIAN G, NEUPANE M, ZHANG C L, JIA S, BANSIL A, LIN H, HASAN M Z. Nat. Commun., 2015, 6:7373.

    17. [17]

      KIM J, CAMPBELL A S, WANG J. Talanta, 2018, 177:163-170.

    18. [18]

      BAI J H, WANG R, JU M X, ZHOU J X, ZHANG L X, JIAO T F. Sci. China Mater., 2021, 64(4):942-952.

    19. [19]

      ZHANG Y, LIANG B, JIANG Q F, LI Y, FENG Y, ZHANG L Q, ZHAO Y M, XIONG X L. Smart Mater. Struct., 2020, 29(7):075027.

    20. [20]

      LEE K Y, MOONEY D J. Chem. Rev., 2001, 101(7):1869-1880.

    21. [21]

      EL-HAFIAN E A, ELGANNOUDI E S, MAINAL A, YAHAYA A H B. Turk. J. Chem., 2010, 34(1):47-56.

    22. [22]

      CHEN Z, CHEN Y J, HEDENQVIST M S, CHEN C, CAI C, LI H, LIU H Z, FU J. J. Mater. Chem. B, 2021, 9(11):2561-2583.

    23. [23]

      CUI C, FU Q J, MENG L, HAO S W, DAI R G, YANG J. ACS Appl. Bio Mater., 2020, 4(1):85-121.

    24. [24]

      LI S N, ZHOU X, DONG Y M, LI J H. Macromol. Rapid Commun., 2020, 41(23):2000444.

    25. [25]

      ZHOU H W, LAI J L, ZHENG B H, JIN X L, ZHAO G X, LIU H B, CHEN W X, MA A, LI X S, WU Y P. Adv. Funct. Mater., 2022, 32(1):2108423.

    26. [26]

      CAI P Q, CHEN X D. ACS Mater. Lett., 2019, 1(2):285-289.

    27. [27]

      JAMAL M, AHMAD W, ANDLEEB S, JALIL F, IMRAN M, NAWAZ M A, HUSSAIN T, ALI M, RAFIQ M, KAMIL M A. J. Chin. Med. Assoc., 2018, 81(1):7-11.

    28. [28]

      RICHTER A, BUND A, KELLER M, ARNDT K F. Sens. Actuators, B, 2004, 99(2-3):579-585.

    29. [29]

      CENSI R, DI M P, VERMONDEN T, HENNINK W. J. Controlled Release, 2012, 161(2):680-692.

    30. [30]

      ZHAO S F, LI J H, CAO D X, ZHANG G P, LI J, LI K, YANG Y, WANG W, JIN Y F, SUN R. ACS Appl. Mater. Interfaces, 2017, 9(14):12147-12164.

    31. [31]

      SUN D, FENG Y F, SUN S C, YU J, JIA S Y, DANG C, HAO X, YANG J, REN W F, SUN R C, SHAO C Y, PENG F. Adv. Funct. Mater., 2022, 32(28):2201335.

    32. [32]

      WU J, WU Z X, XU H H, WU Q, LIU C, YANG B R, GUI X C, XIE X, TAO K, SHEN Y. Mater. Horiz., 2019, 6(3):595-603.

    33. [33]

      CHO B, YOON J, HAHM M G, KIM D H, KIM A R, KAHNG Y H, PARK S W, LEE Y J, PARK S G, KWON J D. J. Mater. Chem. C, 2014, 2(27):5280-5285.

    34. [34]

      WU Z X, YANG X, WU J. ACS Appl. Mater. Interfaces, 2021, 13(2):2128-2144.

    35. [35]

      ZHANG X F, MA X F, HOU T, GUO K C, YIN J Y, WANG Z G, SHU L, HE M, YAO J F. Angew. Chem., Int. Ed., 2019, 58(22):7366-7370.

    36. [36]

      CUI C, SHAO C Y, MENG L, YANG J. ACS Appl. Mater. Interfaces, 2019, 11(42):39228-39237.

    37. [37]

      JI D, PARK J M, OH M S, NGUYEN T L, SHIN H, KIM J S, KIM D, PARK H S, KIM J. Nat. Commun., 2022, 13(1):3019.

    38. [38]

      MORELLE X P, ILLEPERUMA W R, TIAN K, BAI R B, SUO Z G, VLASSAK J J. Adv. Mater., 2018, 30(35):1801541.

    39. [39]

      LIANG Y Z, LIANG H Y. Adv. Mater. Technol., 2021, 6(7):2001234.

    40. [40]

      YE Y H, ZHANG Y F, CHEN Y, HAN X S, JIANG F. Adv. Funct. Mater., 2020, 30(35):2003430.

    41. [41]

      FENG E, LI X, LI J J, YAN Z, ZHENG G C, GAO W, LI Z L, MA X X, YANG Z M. J. Mater. Chem. C, 2021, 9(43):15530-15541.

    42. [42]

      CAI C C, WEN C Y, ZHAO W Q, TIAN S, LONG Y, ZHANG X Y, SUI X J, ZHANG L, YANG J. ACS Appl. Mater. Interfaces, 2022, 14(20):23692-23700.

    43. [43]

      YUK H, ZHANG T, PARADA G A, LIU X Y, ZHAO X H. Nat. Commun., 2016, 7:12028.

    44. [44]

      NIU R, QIN Z H, JI F, XU M, TIAN X L, LI J J, YAO F L. Soft Matter, 2017, 13(48):9237-9245.

    45. [45]

      LIN P, MA S H, WANG X L, ZHOU F. Adv. Mater., 2015, 27(12):2054-2059.

    46. [46]

      SUN J Y, ZHAO X, ILLEPERUMA W R K. Nature, 2012, 489(7414):133-136.

    47. [47]

      LIU M X, LI W D, RONG J H, ZHOU C R. Colloid Polym. Sci., 2012, 290(10):895-905.

    48. [48]

      LIU M X, HUANG J D, LUO B H, ZHOU C R. Int. J. Biol. Macromol., 2015, 78:23-31.

    49. [49]

      GONG J P, KATSUYAMA Y, KUROKAWA T. Adv. Mater., 2003, 15(14):1155-1158.

    50. [50]

      GONG J P. Soft Matter, 2010, 6(12):2583-2590.

    51. [51]

      SI Y, WANG L H, WANG X Q, TANG N, YU J Y, DING B. Adv. Mater., 2017, 29(24):1700339.

    52. [52]

      KONWAR A, KALITA S, KOTOKY J, CHOWDHURY D. ACS Appl. Mater. Interfaces, 2016, 8(32):20625-20634.

    53. [53]

      LIU S J, LI L. ACS Appl. Mater. Interfaces, 2016, 8(43):29749-29758.

    54. [54]

      CHEN Q, ZHU L, ZHAO C, WANG Q M, ZHENG J. Adv. Mater., 2013, 25(30):4171-4176.

    55. [55]

      CHEN Q, ZHU L, HUANG L, CHEN H, XU K, TAN Y, WANG P X, ZHENG J. Macromolecules, 2014, 47(6):2140-2148.

    56. [56]

      JIANG H C, DUAN L J, REN X Y, GAO G H. Eur. Polym. J., 2019, 112:660-669.

    57. [57]

      HAN L, WANG M H, PRIETO-LÓPEZ L O, DENG X, CUI J X. Adv. Funct. Mater., 2020, 30(7):1907064.

    58. [58]

      NELE V, WOJCIECHOWSKI J P, ARMSTRONG J P, STEVENS M M. Adv. Funct. Mater., 2020, 30(42):2002759.

    59. [59]

      WANG C, LIU Y, QU X C, SHI B J, ZHENG Q, LIN X B, CHAO S Y, WANG C Y, ZHOU J, SUN Y. Adv. Mater., 2022, 34(16):2105416.

    60. [60]

      ZHANG X N, WANG Y J, SUN S T, HOU L, WU P Y, WU Z L, ZHENG Q. Macromolecules, 2018, 51(20):8136-8146.

    61. [61]

      JING H C, HE L, FENG J Y, FU H, GUAN S, GUO P P. Soft Matter, 2019, 15(26):5264-5270.

    62. [62]

      HUANG Y W, XIAO L Y, ZHOU J, LIU T, YAN Y Q, LONG S J, LI X F. Adv. Funct. Mater., 2021, 31(37):2103917.

    63. [63]

      WU J, WU Z X, LU X, HAN S J, YANG B R, GUI X C, TAO K, MIAO J M, LIU C. ACS Appl. Mater. Interfaces, 2019, 11(9):9405-9414.

    64. [64]

      LIAO H, GUO X L, WAN P B, YU G H. Adv. Funct. Mater., 2019, 29(39):1904507.

    65. [65]

      WU M, WANG X, XIA Y F, ZHU Y, ZHU S L, JIA C Y, GUO W Y, LI Q Q, YAN Z G. Nano Energy, 2022, 95:106967.

    66. [66]

      FENG E, LI J J, ZHENG G C, YAN Z, LI X, GAO W, MA X X, YANG Z M. ACS Sustainable Chem. Eng., 2021, 9(21):7267-7276.

    67. [67]

      SUN H L, ZHAO Y, JIAO S L, WANG C F, JIA Y P, DAI K, ZHENG G Q, LIU C T, WAN P B, SHEN C Y. Adv. Funct. Mater., 2021, 31(24):2101696.

    68. [68]

      CHEN S, SUN L J, ZHOU X J, GUO Y F, SONG J C, QIAN S H, LIU Z H, GUAN Q B, MEADE J E, LIU W G, WANG Y D, HE C L, YOU Z W. Nat. Commun., 2020, 11(1):1107.

    69. [69]

      LI S Y, LIU G Q, WEN H, LIU G Y, WANG H, YE M D, YANG Y, GUO W X, LIU Y F. Adv. Funct. Mater., 2022, 32(19):2111747.

    70. [70]

      CHORTOS A, LIU J, BAO Z N. Nat. Mater., 2016, 15(9):937-950.

    71. [71]

      ABRAIRA V E, GINTY D D. Neuron, 2013, 79(4):618-639.

    72. [72]

      LI Z K, ZHANG S M, CHEN Y H, LING H N, ZHAO L B, LUO G X, WANG X C, HARTEL M C, LIU H, XUE Y M. Adv. Funct. Mater., 2020, 30(49):2003601.

    73. [73]

      LIU Y M, WONG T H, HUANG X C, YIU C K, GAO Y Y, ZHAO L, ZHOU J K, PARK W, ZHAO Z, YAO K M. Nano Energy, 2022, 99:107442.

    74. [74]

      WU J, WU Z X, WEI Y M, DING H J, HUANG W X, GUI X C, SHI W X, SHEN Y, TAO K, XIE X. ACS Appl. Mater. Interfaces, 2020, 12(16):19069-19079.

    75. [75]

      WU J, WU Z X, HUANG W X, YANG X, LIANG Y N, TAO K, YANG B R, SHI W X, XIE X. ACS Appl. Mater. Interfaces, 2020, 12(46):52070-52081.

    76. [76]

      WU Z X, RONG L M, YANG J L, WEI Y M, TAO K, ZHOU Y B, YANG B R, XIE X, WU J. Small, 2021, 17(52):2104997.

    77. [77]

      WEI Y M, WANG H, DING Q L, WU Z X, ZHANG H, TAO K, XIE X, WU J. Mater. Horiz., 2022, 9(7):1921-1934.

    78. [78]

      GAO Y, JIA F, GAO G H. Chem. Eng. J., 2022, 430:132919.

    79. [79]

      LI T, LI L H, SUN H W, XU Y, WANG X W, LUO H, LIU Z, ZHANG T. Adv. Sci., 2017, 4(5):1600404.

    80. [80]

      WEI Y, QIAN Y Y, ZHU P H, XIANG L J, LEI C F, QIU G, WANG C Y, LIU Y K, LIU Y J, CHEN G. Cellulose, 2022, 29(7):3829-3844.

    81. [81]

      GU J F, HUANG J R, CHEN G Q, HOU L X, ZHANG J, ZHANG X, YANG X X, GUAN L H, JIANG X C, LIU H Y. ACS Appl. Mater. Interfaces, 2020, 12(36):40815-40827.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    4. [4]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    19. [19]

      Hongyan Feng Mingli Gao Chenxiao Jiang Liang Wu Yaoming Wang . Integrating Science and Education to Develop a Series of Teaching Equipment for Chemical Engineering Experiments. University Chemistry, 2025, 40(11): 249-253. doi: 10.12461/PKU.DXHX202412004

    20. [20]

      Ying Liu Lingjie Sun Fangxu Yang Shanshan Cheng Xiaotao Zhang . 教育部重点实验室大型仪器设备平台的建设与管理. University Chemistry, 2025, 40(6): 215-221. doi: 10.12461/PKU.DXHX202407077

Metrics
  • PDF Downloads(42)
  • Abstract views(1764)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return