Citation: LIU Ya,  CHEN Jia-Wei,  ZHAN Fa-Wang,  ZHANG Bo. Advance in Packed Column Technologies for Nanoflow Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 1-10. doi: 10.19756/j.issn.0253-3820.221345 shu

Advance in Packed Column Technologies for Nanoflow Liquid Chromatography

  • Corresponding author: ZHAN Fa-Wang,  ZHANG Bo, 
  • Received Date: 12 July 2022
    Revised Date: 28 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21475110, J1310024) and the Xiamen Marine and Fishery Development Foundation Project (No.19CZB001HJ03).

  • As an important format of the miniaturization of high performance liquid chromatography, nanoflow liquid chromatography has been widely used in the fields of life science, biomedicine and microscale analysis, etc, due to its unique advantages such as less consumption of solvent, less demand of sample amount, higher sensitivity and better compatibility with mass spectrometer. As the core of nanoflow liquid chromatography, packed columns are the most commonly used column type, which are prepared by packing spherical chromatographic materials in the capillary tube. Since column is the place where the separation actually takes place, it plays an important role in the resolution and selectivity of chromatographic separations. Therefore, preparation of high resolution microcolumns is of great importance in securing high performance nano-LC separations. There are two key technologies in preparation of nano-LC columns: fritting and packing. In recent years, with the continuous development of fritting and packing technologies, the stability and separation performance of packed nanoflow liquid chromatographic columns have been significantly improved. This review summarized the developments in fritting and packing technologies involved in nanoflow liquid chromatographic columns in the past ten years, and discussed the recent applications in the field of omics research and biopharmaceuticals, as well as its prospects for future developments.
  • 加载中
    1. [1]

      HORVATH C G, PREISS B A, LIPSKY S R. Anal. Chem., 1967, 39(12):1422-1428.

    2. [2]

      TAKEUCHI T, ISHII D. J. Chromatogr., 1982, 238(2):409-418.

    3. [3]

      TSUDA T, NOVOTNY M. Anal. Chem., 1978, 50(2):271-275.

    4. [4]

      KARLSSON K E, NOVOTNY M. Anal. Chem., 1988, 60(17):1662-1665.

    5. [5]

      GAUTAM S, BANAZADEH A, CHO B G, GOLI M, ZHONG J Q, MECHREF Y. Anal. Chem., 2021, 93(12):5061-5070.

    6. [6]

      GHANEM A, MARZOUK A A, ELADL S M, FOUAD A. J. Chromatogr. A, 2022, 1662:462714.

    7. [7]

      MA M X, ZHANG J, ZHANG X C, KAN Z G, DU Y X. Electrophoresis, 2022, 43(13-14):1415-1422.

    8. [8]

      ROBERG L H, WILSON S R, LUNDANES E. TrAC, Trends Anal. Chem., 2021, 136:116190.

    9. [9]

      FANALI S. J. Chromatogr. A, 2017, 1486:20-34.

    10. [10]

      SESTAK J, MORAVCOVA D, KAHLE V. J. Chromatogr. A, 2015, 1421:2-17.

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      PARK S Y, CHEONG W J. J. Sep. Sci., 2015, 38(17):2938-2944.

    15. [15]

      JUNG H K, MUN M, ALI A, CHEONG W J. Acta Chromatogr., 2020, 32(1):22-27.

    16. [16]

      PARKIN M C, LONGMOORE A M, TURFUS S C, BRAITHWAITE R A, COWAN D A, ELLIOTT S, KICMAN A T. J. Chromatogr. A, 2013, 1277:1-6.

    17. [17]

      ZHANG B, LIU Q, YANG L J, WANG Q Q. J. Chromatogr. A, 2013, 1272:136-140.

    18. [18]

      CHEN J R, DULAY M T, ZARE R N, SVEC F, PETERS E. Anal. Chem., 2000, 72(6):1224-1227.

    19. [19]

      XIA S M, YUAN H M, LIANG Z, ZHANG L H, ZHANG Y K. Chin. Chem. Lett., 2015, 26(9):1068-1072.

    20. [20]

      PARK S Y, CHEONG W J. J. Sep. Sci., 2016, 39(10):1799-1803.

    21. [21]

      KEUNCHKARIAN S, LEBED P J, SLIZ B B, CASTELLS C B, GAGLIARDI L G. Anal. Chim. Acta, 2014, 820:168-175.

    22. [22]

      MACNAIR J E, LEWIS K C, JORGENSON J W. Anal. Chem., 1997, 69(6):983-989.

    23. [23]

      HONG S H, CHEONG W J. J. Sep. Sci., 2016, 39(2):243-246.

    24. [24]

      MARTIN S E, SHABANOWITZ J, HUNT D F, MARTO J A. Anal. Chem., 2000, 72(18):4266-4274.

    25. [25]

      BRAGG W, SHAMSI S A. Sep. Sci. Technol., 2013, 48(17):2589-2599.

    26. [26]

      AHSAN N, BELMONT J, CHEN Z, CLIFTON J G, SALOMON A R. J. Proteomics, 2017, 165:69-74.

    27. [27]

      ZHANG B, BERGSTROEM E T, GOODALL D M, MYERS P. Anal. Chem., 2007, 79(23):9229-9233.

    28. [28]

      XIAO Z L, WANG L, LIU Y, WANG Q Q, ZHANG B. J. Chromatogr. A, 2014, 1325:109-114.

    29. [29]

      HAN J, YE L Q, XU L J, ZHOU Z H, GAO F, XIAO Z L, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2014, 852:267-273.

    30. [30]

      YANG L J, XU L J, GUO R, GAO T Y, GUO H X, YU Y, LV J J, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2018, 1033:205-212.

    31. [31]

      LIU Y, SUN K Y, SHAO C Y, SHI X H, ZENG J X, GUO R, ZHANG B. J. Chromatogr. A, 2021, 1648:462218.

    32. [32]

      LIU Y, WANG X F, CHEN Z Q, LIANG D H, SUN K Y, HUANG S Q, ZHU J, SHI X H, ZENG J X, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2019, 1062:147-155.

    33. [33]

      LI K, HU W Y, ZHOU Y Y, DOU X N, WANG X Y, ZHANG B, GUO G S. Talanta, 2020, 215:120896.

    34. [34]

      LIU L N, ZHANG B, ZHANG Q, SHI Y H, GUO L P, YANG L. J. Chromatogr. A, 2014, 1352:80-86.

    35. [35]

      MALIK A, LI W B, LEE M L. J. Microcolumn Sep., 1993, 5(4):361-369.

    36. [36]

      YAN C. United States Patent, US5453163, 1995.

    37. [37]

      WAHAB M F, PATEL D C, WIMALASINGHE R M, ARMSTRONG D W. Anal. Chem., 2017, 89(16):8177-8191.

    38. [38]

      BRUNS S, FRANKLIN E G, GRINIAS J P, GODINHO J M, JORGENSON J W, TALLAREK U. J. Chromatogr. A, 2013, 1318:189-197.

    39. [39]

      CAPRIOTTI F, LEONARDIS I, CAPPIELLO A, FAMIGLINI G, PALMA P. Chromatographia, 2013, 76(17-18):1079-1086.

    40. [40]

      FERMIER A M, COLON L A. J. Microcolumn Sep., 1998, 10(5):439-447.

    41. [41]

      LIU Y, WEN H R, CHEN S Y, WANG X J, ZHU X D, LUO L Z, WANG X F, ZHANG B. Anal. Chem., 2022, 94(23):8126-8131.

    42. [42]

      WANG X F, ZHU J, YANG C Y, QIN F, ZHANG B. Anal. Chem., 2021, 93(24):8450-8458.

    43. [43]

      SAITO Y, JINNO K, GREIBROKK T. J. Sep. Sci., 2004, 27(17-18):1379-1390.

    44. [44]

      GILAR M, MCDONALD T S, GRITTI F. J. Chromatogr. A, 2017, 1523:215-223.

    45. [45]

      ABIAN J, OOSTERKAMP A J, GELPI E. J. Mass Spectrom., 1999, 34(4):244-254.

    46. [46]

      YI L, PIEHOWSKI P D, SHI T J, SMITH R D, QIAN W J. J. Chromatogr. A, 2017, 1523:40-48.

    47. [47]

      WEBBER K G, TRUONG T, JOHNSTON S M, ZAPATA S E, LIANG Y, DAVIS J M, BUTTARS A D, SMITH F B, JONES H E, MAHONEY A C, CARSON R H, NWOSU A J, HENINGER J L, LIYU A V, NORDIN G P, ZHU Y, KELLY R T. Anal. Chem., 2022, 94(15):6017-6025.

    48. [48]

      YANG Y, SU Y, WANG X, GAO W N, LU X, LAM H, TIAN R J. Anal. Chim. Acta, 2022, 1201:339615.

    49. [49]

      MUELLER J B, HANSEN F M, SCHWEIZER L, TREIT P V, GEYER P E, MANN M. Mol. Cell. Proteomics, 2021, 20:100082.

    50. [50]

      MA S J, WANG Y, ZHANG N, LYU J W, MA C, XU J W, LI X W, OU J J, YE M L. Anal. Chem., 2020, 92(2):2274-2282.

    51. [51]

      CHENG J H, MORIN G B, CHEN D D. Electrophoresis, 2020, 41(5-6):370-378.

    52. [52]

      CLAIR G, PIEHOWSKI P D, NICOLA T, KITZMILLER J A, HUANG E L, ZINK E M, SONTAG R L, ORTON D J, MOORE R J, CARSON J P, SMITH R D, WHITSETT J A, CORLEY R A, AMBALAVANAN N, ANSONG C. Sci. Rep., 2016, 6:39223.

    53. [53]

      SHISHKOVA E, HEBERT A S, WESTPHALL M S, COON J J. Anal. Chem., 2018, 90(19):11503-11508.

    54. [54]

      CONG Y Z, LIANG Y R, MOTAMEDCHABOKI K, HUGUET R, TRUONG T, ZHAO R, SHEN Y F, LOPEZ D, ZHU Y, KELLY R T. Anal. Chem., 2020, 92(3):2665-2671.

    55. [55]

      TRANG H K, MARCUS R K. Electrophoresis, 2020, 41(3-4):215-224.

    56. [56]

      HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.

    57. [57]

      ROCA L S, GARGANO A F, SCHOENMAKERS P J. Anal. Chim. Acta, 2021, 1156:338349.

    58. [58]

      KWIATKOWSKI M, KROESSER D, WURLITZER M, STEFFEN P, BARCARU A, KRISP C, HORVATOVICH P, BISCHOFF R, SCHLUETER H. Anal. Chem., 2018, 90(16):9951-9958.

    59. [59]

      KULAK N A, GEYER P E, MANN M. Mol. Cell. Proteomics, 2017, 16(4):694-705.

    60. [60]

      REN J T, BECKNER M A, LYNCH K B, CHEN H, ZHU Z F, YANG Y, CHEN A P, QIAO Z Z, LIU S R, LU J J. Talanta, 2018, 182:225-229.

    61. [61]

      WANG Z, YU D H, CUPP K A, LIU X W, SMITH K, WU S. Anal. Chem., 2020, 92(19):12774-12777.

    62. [62]

      AYDOGAN C, RIGANO F, KRCMOVA L K, CHUNG D S, MACKA M, MONDELLO L. Anal. Chem., 2020, 92(17):11485-11497.

    63. [63]

      SHAN L, JONES B R. Biomed. Chromatogr., 2022, 36(5):e5317.

    64. [64]

      KAPLITZ A S, KRESGE G A, SELOVER B, HORVAT L, FRANKLIN E G, GODINHO J M, GRINIAS K M, FOSTER S W, DAVIS J J, GRINIAS J P. Anal. Chem., 2020, 92(1):67-84.

    65. [65]

      CHETWYND A J, OGILVIE L A, NZAKIZWANAYO J, PAZDIREK F, HOCH J, DEDI C, GILBERT D, ABDUL A, JONES B V, HILL E M. J. Chromatogr. A, 2019, 1600:127-136.

    66. [66]

      DANNE N, COMAN C, AHRENDS R. Anal. Chem., 2018, 90(13):8093-8101.

    67. [67]

      DENG J J, ZHANG G A, NEUBERT T A. Methods Mol. Biol., 2018, 1741:125-134.

    68. [68]

      SORENSEN M J, KENNEDY R T. J. Chromatogr. A, 2021, 1635:461706.

    69. [69]

      CERRATO A, BEDIA C, CAPRIOTTI A L, CAVALIERE C, GENTILE V, MAGGI M, MONTONE C M, PIOVESANA S, SCIARRA A, TAULER R, LAGANA A. Anal. Chim. Acta, 2021, 1158:338381.

    70. [70]

      CHETWYND A J, ABDULSADA A, HILL E M. Anal. Chem., 2015, 87(2):1158-1165.

    71. [71]

      JONES D R, WU Z P, CHAUHAN D, ANDERSON K C, PENG J M. Anal. Chem., 2014, 86(7):3667-3675.

    72. [72]

      LUO X, LI L. Anal. Chem., 2017, 89(21):11664-11671.

    73. [73]

      STOLL M L, KUMAR R, LEFKOWITZ E J, CRON R Q, MORROW C D, BARNES S. Genes Immun., 2016, 17(7):400-405.

    74. [74]

      FARROKHI V, CHEN X Y, NEUBERT H. Clin. Chem., 2018, 64(2):279-288.

    75. [75]

      MITRAGOTRI S, BURKE P A, LANGER R. Nat. Rev. Drug Discovery, 2014, 13(9):655-672.

    76. [76]

      THOMPSON J H, CHUNG W K, ZHU M, TIE L, LU Y L, ABOULAICH N, STROUSE R, MO W J. Rapid Commun. Mass Spectrom., 2014, 28(8):855-860.

    77. [77]

      MADUNIC K, ZHANG T, MAYBORODA O A, HOLST S, STAVENHAGEN K, JIN C S, KARLSSON N G, LAGEVEEN G S, WUHRER M. Cell. Mol. Life Sci., 2021, 78(1):337-350.

    78. [78]

      HIGEL F, SEIDL A, DEMELBAUER U, SORGEL F, FRIEB W. MAbs, 2014, 6(4):894-903.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    4. [4]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    5. [5]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    6. [6]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    7. [7]

      Shangwen Luo Jianguo Fang Yanlong Yang Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096

    8. [8]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    9. [9]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

    13. [13]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    16. [16]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    17. [17]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(14)
  • Abstract views(1058)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return