Citation: DENG Zhuo-Wen,  CHEN Zhe,  FU Jia-Shun,  YUN Yong-Huan. Application Progress of Data Fusion Strategy in Food Origin Traceability[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 11-21. doi: 10.19756/j.issn.0253-3820.221339 shu

Application Progress of Data Fusion Strategy in Food Origin Traceability

  • Corresponding author: YUN Yong-Huan, yunyonghuan@hainanu.edu.cn
  • Received Date: 9 July 2022
    Revised Date: 29 September 2022

    Fund Project: Supported by the Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation (No.ZX-2022001), the National Natural Science Foundation of China (No.22164008) and the Innovation Platform for Academicians of Hainan Province, China.

  • The origin traceability technique can effectively identify the source of food products, and thus plays an important role in protecting consumers' rights and interests and maintaining the reputation of products. Commonly used detection methods for origin traceability include spectroscopy, mass spectrometry, chromatography, and sensor techniques. However, for foods with complex chemical composition, a single analytical technique usually cannot obtain sufficient chemical information, while data fusion strategy can improve the identification effect in origin traceability by processing the data obtained by different detection techniques, and combining it to obtain more useful information. At present, data fusion strategy has been widely used in the field of food origin traceability. In this paper, the origin traceability techniques including spectroscopy, mass spectrometry, chromatography and sensor techniques were introduced. The current application status of data fusion strategy based on these techniques in food origin traceability was reviewed. The development of data fusion strategy in food origin traceability was prospected, with a view to providing references for the research and development of food origin traceability.
  • 加载中
    1. [1]

      QIAN J P, RUIZ-GARCIA L, FAN B L, ROBLA VILLALBA J I, MCCARTHY U, ZHANG B H, YU Q Y, WU W B. Trends Food Sci. Tech., 2020, 99:402-412.

    2. [2]

      TAHIR H E, ARSLAN M, KOMLA MAHUNU G, MARIOD A A, HASHIM S B H, ZOU X B, SHI J Y, EL-SEEDI H R, MUSA T H. Food Chem., 2022, 366:130633.

    3. [3]

      KATERINOPOULOU K, KONTOGEORGOS A, SALMAS C E, PATAKAS A, LADAVOS A. Foods, 2020, 9(4):489.

    4. [4]

      BORRAS E, FERRE J, BOQUE R, MESTRES M, ACENA L, BUSTO O. Anal. Chim. Acta, 2015, 891:1-14.

    5. [5]

    6. [6]

      MAGDAS D A, GUYON F, BERGHIAN-GROSAN C, MULLER MOLNAR C. Food Control, 2021, 123:107769.

    7. [7]

      AL RIZA D F, KONDO N, ROTICH V K, PERONE C, GIAMETTA F. Food Control, 2021, 121:107604.

    8. [8]

    9. [9]

      BODIN N, AMIEL A, FOUCHE E, SARDENNE F, CHASSOT E, DEBRAUWER L, GUILLOU H, TREMBLAY-FRANCO M, CANLET C. Food Chem., 2022, 371:131094.

    10. [10]

      CAPORASO N, WHITWORTH M B, FISK I D. Appl. Spectrosc. Rev., 2018, 53(8):667-687.

    11. [11]

    12. [12]

      GOPI K, MAZUMDER D, SAMMUT J, SAINTILAN N, CRAWFORD J, GADD P. Aquaculture, 2019, 502:56-62.

    13. [13]

      QIAN L L, ZHANG C D, ZUO F, ZHENG L N, LI D, ZHANG A W, ZHANG D J. J. Food Compos. Anal., 2019, 83:103276.

    14. [14]

      YUN J, CUI C J, ZHANG S H, ZHU J J, PENG C Y, CAI H M, YANG X G, HOU R Y. Food Chem., 2021, 360:130033.

    15. [15]

      LEE T H, LEE C H, AZMI N A, LIEW R K, HAMDAN N, WONG S L, ONG P Y. J. Food Compos. Anal., 2022, 107:104399.

    16. [16]

      LI Y H, LIANG L, XU C H, YANG T M, WANG Y X. LWT-Food Sci. Technol., 2021, 137:110382.

    17. [17]

      WANG X R, GU Y, LIU H X. IEEE Sens. J., 2021, 21(6):8065-8077.

    18. [18]

    19. [19]

      MALECHAUX A, GARCIA R, LE DREAU Y, PIRES A, DUPUY N, CABRITA M J. J. Agric. Food Chem., 2021, 69(14):4177-4190.

    20. [20]

      LI Y, ZHANG J, LI T, LIU H G, LI J Q, WANG Y Z. Spectrochim. Acta, Part A, 2017, 177:20-27.

    21. [21]

    22. [22]

      RIOS-REINA R, AZCARATE S M, CAMINA J M, GOICOECHEA H C. Anal. Chim. Acta, 2020, 1126:52-62.

    23. [23]

      MACHADO J R J C, FARIA M A, FERREIRA I, PASCOA R, LOPES J A. Talanta, 2018, 180:69-75.

    24. [24]

    25. [25]

    26. [26]

      FOSCHI M, BIANCOLILLO A, VELLOZZI S, MARINI F, D'ARCHIVIO A A, BOQUE R. Chemom. Intell. Lab. Syst., 2021, 215:104348.

    27. [27]

      LI Y, ZHANG J Y, WANG Y Z. Anal. Bioanal. Chem., 2018, 410(1):91-103.

    28. [28]

      WANG C Y, TANG L, LI L, ZHOU Q, LI Y J, LI J, WANG Y Z. Front. Plant Sci., 2020, 11:79.

    29. [29]

      WANG C Y, TANG L, JIANG T, ZHOU Q, LI J, WANG Y Z, KONG C H. Ind. Crop. Prod., 2021, 160:113090.

    30. [30]

    31. [31]

      FORT A, RUISANCHEZ I, CALLAO M P. Microchem. J., 2021, 169:106611.

    32. [32]

      TAN J, LI R, JIANG Z T, ZHANG Y, HOU Y M, WANG Y R, WU X, GONG L. Aust. J. Grape Wine R., 2016, 22(3):358-365.

    33. [33]

    34. [34]

      MENG W J, XU X N, CHENG K K, XU J J, SHEN G P, WU Z D, DONG J Y. Food Anal. Method., 2017, 10(11):3508-3522.

    35. [35]

      MONAKHOVA Y B, GODELMANN R, HERMANN A, KUBALLA T, CANNET C, SCHAFER H, SPRAUL M, RUTLEDGE D N. Anal. Chim. Acta, 2014, 833:29-39.

    36. [36]

      WANG S Q, CHEN H T, SUN B G. Food Chem., 2020, 315:126158.

    37. [37]

      SCHWOLOW S, GERHARDT N, ROHN S, WELLER P. Anal. Bioanal. Chem., 2019, 411(23):6005-6019.

    38. [38]

      WANG Q Q, HUANG H Y, WANG Y Z. Molecules, 2019, 24(7):1320.

    39. [39]

      GIANNETTI V, MARIANI M B, MARINI F, TORRELLI P, BIANCOLILLO A. Microchem. J., 2020, 157:104896.

    40. [40]

      RIVERA-PEREZ A, ROMERO-GONZALEZ R, FRENICH A G. J. Agric. Food Chem., 2021, 69(19):5547-5558.

    41. [41]

      RIVERA-PEREZ A, ROMERO-GONZALEZ R, FRENICH A G. Food Res. Int., 2021, 150:110722.

    42. [42]

      LI L, BOYD C E, SUN Z. Food Chem., 2016, 194:1238-1244.

    43. [43]

      CAMIN F, BONER M, BONTEMPO L, FAUHL-HASSEK C, KELLY S D, RIEDL J, ROSSMANN A. Trends Food Sci. Tech., 2017, 61:176-187.

    44. [44]

    45. [45]

      KANG X M, ZHAO Y F, LIU W, DING H Y, ZHAI Y X, NING J S, SHENG X F. J. Food Compos. Anal., 2021, 99:103852.

    46. [46]

      DRIVELOS S A, HIGGINS K, KALIVAS J H, HAROUTOUNIAN S A, GEORGIOU C A. Food Chem., 2014, 165:316-322.

    47. [47]

      HIRAOKA H, MORITA S, IZAWA A, AOYAMA K, SHIN K C, NAKANO T. Anal. Sci., 2016, 32(7):781-788.

    48. [48]

      JANDRIC Z, TCHAIKOVSKY A, ZITEK A, CAUSON T, STURSA V, PROHASKA T, HANN S. Food Chem., 2021, 338:127924.

    49. [49]

      OBISESAN K A, JIMENEZ-CARVELO A M, CUADROS-RODRIGUEZ L, RUISANCHEZ I, CALLAO M P. Talanta, 2017, 170:413-418.

    50. [50]

      VERA D N, JIMENEZ-CARVELO A M, CUADROS-RODRIGUEZ L, RUISANCHEZ I, CALLAO M P. Talanta, 2019, 203:194-202.

    51. [51]

      KHARBACH M, VIAENE J, YU H, KAMAL R, MARMOUZI I, BOUKLOUZE A, HEYDEN Y V. J. Chromatogr. A, 2022, 1670:462972.

    52. [52]

    53. [53]

      QIE M J, ZHANG B, LI Z, ZHAO S S, ZHAO Y. Food Control, 2021, 120:107549.

    54. [54]

      WANG Z C, YAN Y Z, NISAR T, SUN L J, ZENG Y, GUO Y R, WANG H C, FANG Z X. Food Control, 2019, 98:457-464.

    55. [55]

      HAN F K, ZHANG D J, AHETO J H, FENG F, DUAN T F. Food Sci. Nutr., 2020, 8(8):4330-4339.

    56. [56]

      WU H, YUE T L, YUAN Y H. Food Anal. Methods, 2018, 11(2):522-532.

    57. [57]

      XU M, WANG J, JIA P F, DAI Y. Trans. ASABE, 2021, 64(1):327-340.

    58. [58]

      SHI Y, LIU M, SUN A, LIU J J, MEN H. Sens. Actuators, A, 2021, 332:113184.

  • 加载中
    1. [1]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    2. [2]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    3. [3]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    4. [4]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    5. [5]

      Xia Zhang Xiaoguang Sang Jinxia Wang Hao Meng . Problem-Driven Inorganic Chemistry Course Teaching Practice Integrating Industry,Academia,and Research. University Chemistry, 2024, 39(10): 369-376. doi: 10.12461/PKU.DXHX202310027

    6. [6]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    7. [7]

      Biao Zuo Yizhi Zhang Zhengkai Chen Houkuan Tian Yongneng Wang Wei Zhang Weizu Wang Xuming Zheng Xinping Wang . Strengthening the Functions of Academic Research and Promoting the Integration of Science and Education: Exploration Ways to Cultivate the Talents of Undergraduate Chemistry Students. University Chemistry, 2024, 39(11): 38-43. doi: 10.3866/PKU.DXHX202402066

    8. [8]

      Biaolin Yin Yuanfu Deng Dongen Lin . Exploration and Practice of Integrating Ideological and Political Education and Innovative Thinking into “Organic Chemistry” Teaching. University Chemistry, 2024, 39(2): 286-291. doi: 10.3866/PKU.DXHX202308026

    9. [9]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    10. [10]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    13. [13]

      Heng Zhang Gang Liu Zhenghu Xu Ying Ma . Construction and Practice of Comprehensive Open and Innovative Chemistry Experimental Teaching System and Platform in the Context of Multidisciplinary Integration. University Chemistry, 2024, 39(7): 56-63. doi: 10.12461/PKU.DXHX202405001

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    16. [16]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    19. [19]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    20. [20]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

Metrics
  • PDF Downloads(18)
  • Abstract views(852)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return