Citation: CHENG Shi-Qi,  YANG Jin,  QIN Shang-Ying,  HUANG Li,  SHI Rui,  WANG Yi-Lin. Molecularly Imprinted Glucose Electrochemical Sensor Sensitized by Carbon Quantum Dots[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 549-558. doi: 10.19756/j.issn.0253-3820.221338 shu

Molecularly Imprinted Glucose Electrochemical Sensor Sensitized by Carbon Quantum Dots

  • Corresponding author: WANG Yi-Lin, theanalyst@163.com
  • Received Date: 9 July 2022
    Revised Date: 16 October 2022

    Fund Project: Supported by the Innovation Project of Guangxi Graduate Education (No. YCSW2021050) and the Opening Project of Guangxi Key Laboratory of Electrochemical Energy Materials (No. KF2020012).

  • An enzyme-free molecularly imprinted electrochemical sensor was constructed for highly sensitive determination of glucose. The molecular imprinting polymer was electro-deposited on the surface of carbon quantum dots and chitosan modified glassy carbon electrode using 3-aminobenzeneboronic acid as functional monomer and glucose as template molecule. The electrochemical and analytical characteristics of the sensor were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. Under the optimal conditions, variation of the peak current of the sensor showed good linear correlation with the glucose concentration in the range of 0.1-1.0 μmol/L and 1.0-300 μmol/L, respectively. The linear regression equations were ΔIp (μA)=3.792 + 23.41C (R2=0.9968) and ΔIp (μA)=28.18 +0.1316C (R2=0.9914), respectively, with a detection limit of 0.034 μmol/L (3σ/k). The method exhibited potential application in detection of glucose in body fluids with recoveries of 95.1%-106.8%.
  • 加载中
    1. [1]

      MA C, SUN Z, CHEN C, ZHANG L, ZHU S. Food Chem., 2014, 145:784-788.

    2. [2]

      GEORGELIS N, FENCIL K, RICHAEL C M. Food Chem., 2018, 262:191-198.

    3. [3]

    4. [4]

      FENG L, YANG J, ZHANG S, ZHANG L, CHEN X, LI P, GAO Y, XIE S, ZHANG Y, WANG H. Analyst, 2020, 145(15):5273-5279.

    5. [5]

      JABARIYAN S, ZANJANCHI M A, ARVAND M, SOHRABNEZHAD S. Spectrochim. Acta, Part A, 2018, 203:294-300.

    6. [6]

    7. [7]

    8. [8]

      MENG W, WEN Y Y, DAI L, HE Z X, WANG L. Sens. Actuators, B, 2018, 260:852-860.

    9. [9]

      GUO C Y, LI H, ZHANG X, HUO H H, XU C L. Sens. Actuators, B, 2015, 206:407-414.

    10. [10]

      TIAN K J, LIU H, DONG Y P, CHU X F, WANG S B. Colloids Surf., A, 2019, 581:123808.

    11. [11]

      LIU W, WU X, LI X. RSC Adv., 2017, 7(58):36744-36749.

    12. [12]

      ÖZCAN L, ŞAHIN Y, TÜRK H. Biosens. Bioelectron., 2008, 24(4):512-517.

    13. [13]

      WANG J, BAO W, ZHANG L. Anal. Methods, 2012, 4(12):4009-4013.

    14. [14]

      KIM D M, MOON J M, LEE W C, YOON J H, CHOI C S, SHIM Y B. Biosens. Bioelectron., 2017, 91:276-283.

    15. [15]

      WANG C, WANG Q, ZHONG M, KAN X. Analyst, 2016, 141(20):5792-5798.

    16. [16]

      AYANKOJO A G, REUT J, CIOCAN V, ÖPIK A, SYRITSKI V. Talanta, 2020, 209:120502-120512.

    17. [17]

      WANG H, DENG K Q, XIAO J, LI C X, ZHANG S W, LI X F. Sens. Actuators, B, 2020, 304:127363-127371.

    18. [18]

      DENG K, XIAO J, LIU Z, LI C, WANG J, YI Q, HUANG H, ZHOU H. Biosens. Bioelectron., 2021, 181:113152.

    19. [19]

    20. [20]

      YEASMIN S, WU B, LIU Y, ULLAH A, CHENG L J. Biosens. Bioelectron., 2022, 206:114142.

    21. [21]

      RADI A, ABD-ELLATIEF M R. Electroanalysis, 2021, 33(6):1578-1584.

    22. [22]

    23. [23]

      HUANG Q, ZHAO Z, NIE D, JIANG K, GUO W, FAN K, ZHANG Z, MENG J, WU Y, HAN Z. Anal. Chem., 2019, 91(6):4116-4123.

    24. [24]

      ABBAS M W, SOOMRO R A, KALWAR N H, ZAHOOR M, AVCI A, PEHLIVAN E, HALLAM K R, WILLANDER M. Microchem. J., 2019, 146:517-524.

    25. [25]

      LI R Z, DU L J, HU Y, LIU X Y, LIU G. Sens. Mater., 2021, 33(10):3657-3674.

    26. [26]

      WEI Y Y, ZHANG D, FANG Y X, WANG H, LIU Y Y, XU Z F, WANG S J, GUO Y. J. Sens., 2019, 2019:9869682.

    27. [27]

      YUAN C, QIN X, XU Y, JING Q, SHI R, WANG Y. Microchem. J., 2020, 159:105365.

    28. [28]

      THAMBIRAJ S, RAVI SHANKARAN D. Appl. Surf. Sci., 2016, 390:435-443.

    29. [29]

      BORNA S, SABZI R E, PIRSA S. J. Mater. Sci.:Mater. Electron., 2021, 32(8):10866-10879.

    30. [30]

      WANG X, LI M J, YANG S, SHAN J J. Electrochim. Acta, 2020, 359(14):11065-11070.

    31. [31]

      CUI H F, WU W W, LI M M, SONG X, LV Y, ZHANG T T. Biosens. Bioelectron., 2018, 99:223-229.

    32. [32]

      YAN Z, YANG X, HUA Y, LI Z, LIU Y, LIN Y. Microchem. J., 2021, 169:106520.

    33. [33]

      ZHANG J, GUO X T, ZHOU J P, LIU G Z, ZHANG S Y. Mater. Sci. Eng., C, 2018, 91:696-704.

    34. [34]

      WANG B, LIU F, WU Y Y, CHEN Y F, WENG B, LI C M. Sens. Actuators, B, 2018, 255:2601-2607.

    35. [35]

      RECKSIEDLER C L, DEORE B A, FREUND M S. Langmuir, 2005, 21(8):3670-3674.

    36. [36]

      BUFFON E, STRADIOTTO N R. Sens. Actuators, B, 2019, 287:371-379.

    37. [37]

      LIU L, WANG J, WANG C, WANG G. Appl. Surf. Sci., 2016, 390:303-310.

    38. [38]

      DAI H, CAO P, CHEN D, LI Y, WANG N, MA H, LIN M. Synth. Met., 2018, 235:97-102.

    39. [39]

      CHO S J, NOH H B, WON M S, CHO C H, KIM K B, SHIM Y B. Biosens. Bioelectron., 2018, 99:471-478.

    40. [40]

      YANG Y, YI C, LUO J, LIU R, LIU J, JIANG J, LIU X. Biosens. Bioelectron., 2011, 26(5):2607-2612.

    41. [41]

      YE D X, LIANG G H, LI H X, LUO J, ZHANG S, CHENG H, KONG J L. Talanta, 2013, 116:223-230.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    5. [5]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    6. [6]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    7. [7]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    11. [11]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    12. [12]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    13. [13]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    14. [14]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    20. [20]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

Metrics
  • PDF Downloads(19)
  • Abstract views(2457)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return