Citation: LI Chang,  XIE Jie,  LIU Mei-Ying,  HUANG Ze-Jian,  DAI Xin-Hua,  JIANG You,  FANG Xiang,  TIAN Di. Research on Simultaneous Fragmentation and Accumulation Technique Based on Quadrupole-Dual Pressure Linear Ion Trap Mass Spectrometer[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 269-275. doi: 10.19756/j.issn.0253-3820.221315 shu

Research on Simultaneous Fragmentation and Accumulation Technique Based on Quadrupole-Dual Pressure Linear Ion Trap Mass Spectrometer

  • Corresponding author: JIANG You,  FANG Xiang,  TIAN Di, 
  • Received Date: 27 June 2022
    Revised Date: 27 July 2022

    Fund Project: Supported by the National Key R&D Program of China (No. 2020YFF01014603), the National Natural Science Foundation of China (No. 21927812) and the Fundamental Research Funds of the National Institute of Metrology, China (No. AKY1934).

  • In this work, a quadrupole-dual pressure linear ion trap (Q-DPLIT) tandem mass spectrometer was developed and combined with a simultaneous technique to further improve the sensitivity and accuracy. The instrument consisted of a quadrupole and two hyperbolic ion traps in axial series. The precursor ions were filtered by the quadrupole into the linear ion trap Ⅰ (LITⅠ). At the same time, a composite waveform was applied to the LITI, so that the fragmentation of the precursor ions, isolation and accumulation of product ions occurred simultaneously. Then, the product ions were transferred to the linear ion trap Ⅱ (LITⅡ) for detection. By changing the helium flux introduced into LITⅠ, the ion trapping ability of the ion trap under different fluxes was investigated, and the optimal analysis condition was obtained. The results showed that the number of reserpine ions trapped by Q-DPLIT was 4.2 times as that of Q-LIT under the respective optimal conditions. The target peptide GVFGVF in concentrations ranging from 10 to 100 ng/mL with 100 μg/mL VVFFGG as the matrix was detected by Q-DPLIT. The mass-to-charge ratios (m/z) of VVFFGG and GVFGVF were both 625.3 amu. The ion accumulation time was 0.1-10 s. The signal intensity of the target product ion (m/z = 460.3 amu) measured by the simultaneous technique was improved by 1.3-10 times compared with that without this technique, and the linear correlation coefficient was increased from 0.6693-0.9449 to 0.9942-0.9994. The combination of Q-DPLIT and simultaneous technique could further improve the sensitivity and reduced the interferences of matrices. It was expected to achieve better analytical results in the analysis of trace substances in complex matrices in the future.
  • 加载中
    1. [1]

      KOBAYASHI H, IMAI K. Front. Chem., 2021, 9:640336.

    2. [2]

      NEAGU A N, JAYATHIRTHA M, BAXTER E, DONNELLY M, PETRE B A, DARIE C C. Molecules, 2022, 27(8):2411.

    3. [3]

    4. [4]

      LEE K W, EAKINS G S, CARLSEN M S, MCLUCKEY S A. Int. J. Mass Spectrom., 2020, 451:116313-116317.

    5. [5]

      FRANKFATER C, ABRAMOVITCH R, PURDY G, TURK J, LEGENTIL L, LEMIÈGRE L, HSU F F. Separations, 2019, 6(1):4-17.

    6. [6]

      GUO D, WANG Y, XIONG X, ZHANG H, ZHANG X, YUAN T, FANG X, XU W. J. Am. Soc. Mass Spectrom., 2014, 25(3):498-508.

    7. [7]

      XU Z, JIANG T, XU Q, ZHAI Y, LI D, XU W. Anal. Chem., 2019, 91(21):13838-13846.

    8. [8]

      CHEN L, YAO C, LI J, WANG J, YAO S, SHEN S, YANG L, ZHANG J, WEI W, BI Q, GUO D. J. Sep. Sci., 2021, 44(14):2717-2727.

    9. [9]

    10. [10]

      LIU H, LIN T, LI Q. J. AOAC Int., 2020, 103(3):865-871.

    11. [11]

      PEKAR SECOND T, BLETHROW J D, SCHWARTZ J C, MERRIHEW G E, MACCOSS M J, SWANEY D L, RUSSELL J D, COON J J, ZABROUSKOV V. Anal. Chem., 2009, 81(18):7757-7765.

    12. [12]

      SI X, XIONG X, ZHANG S, FANG X, ZHANG X. Anal. Chem., 2017, 89(4):2275-2281.

    13. [13]

      LIU X, WANG X, BU J, ZHOU X, OUYANG Z. Anal. Chem., 2019, 91(2):1391-1398.

    14. [14]

      KANG M, LIAN R, ZHANG X, LI Y, ZHANG Y, ZHANG Y, ZHANG W, OUYANG Z. Talanta, 2020, 217:121057.

    15. [15]

      HOPFGARTNER G, HUSSER C, ZELL M. J. Mass Spectrom., 2003, 38(2):138-150.

    16. [16]

      SENKO M W, REMES P M, CANTERBURY J D, MATHUR R, SONG Q, ELIUK S M, MULLEN C, EARLEY L, HARDMAN M, BLETHROW J D, BUI H, SPECHT A, LANGE O, DENISOV E, MAKAROV A, HORNING S, ZABROUSKOV V. Anal. Chem., 2013, 85(24):11710-11714.

    17. [17]

      FANG X, XIE J, CHU S, JIANG Y, AN Y, LI C, GONG X, ZHAI R, HUANG Z, QIU C, DAI X. Engineering, 2022, 16:56-64.

    18. [18]

      LI C, JIANG Y, CHU S Y, YIN X C, TAN S Y, HUANG Z J, DAI X H, GONG X Y, FANG X, TIAN D. Rapid Commun. Mass Spectrom., 2022, 36(10):e9276-1-10.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    3. [3]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    4. [4]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    5. [5]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    12. [12]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    18. [18]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Wuyi Feng Di Zhao . Significance and Measures of Integrating Artificial Intelligence Technology into College Chemistry Teaching. University Chemistry, 2025, 40(9): 156-163. doi: 10.12461/PKU.DXHX202502107

Metrics
  • PDF Downloads(17)
  • Abstract views(4626)
  • HTML views(334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return