Citation: YANG Qi,  LI Ken-Ken,  WEI Pei-Yuan,  NIU Zi-Jun,  WANG Wen-Wen,  LIU Li,  WANG Song-Lei. Sensitive Detection of Clenbuterol by Electrochemical Sensor Based on N-doped Cobalt Metal Organic Framework Modified Electrode[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 559-569. doi: 10.19756/j.issn.0253-3820.221297 shu

Sensitive Detection of Clenbuterol by Electrochemical Sensor Based on N-doped Cobalt Metal Organic Framework Modified Electrode

  • Corresponding author: WANG Song-Lei, wangsonglei163@126.com
  • Received Date: 18 June 2022
    Revised Date: 1 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 31660484) and the Project of Ningxia Excellent Youth Science Foundation (No. 2022AAC05022).

  • N-doped cobalt metal organic framework (N-Co-MOF) was synthesized by solvothermal method using trimesic acid as ligand and Co2+ and polyvinyl pyrrolidone (PVP) as central metal ions and nitrogen source. The morphology and composition of the materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electrochemical sensor for detection of clenbuterol (CLB) was constructed on glassy carbon electrode (GCE) modified with N-Co-MOF. The cyclic voltammetry (CV) characterization results showed that the N-Co-MOF could provide more electrochemical active sites and significantly improve the electron transfer ability, and had good electrocatalytic oxidation activity for CLB. The linear range of the sensor for CLB was 0.01-29.5 μmol/L, and the detection limit (3σ) was 4.6 nmol/L. The sensor had excellent anti-interference performance, good reproducibility and stability, and had good accuracy in detection of CLB in actual meat samples, with recoveries of 98.5%-102.9%.
  • 加载中
    1. [1]

      MA Z, WANG Q, GAO N, LI H. Microchem. J., 2020, 157:104911.

    2. [2]

      STELLA R, BOVO D, MASTRORILLI E, MANUALI E, PEZZOLATO M, BOZZETTA E, LEGA F, ANGELETTI R, BIANCOTTO G. Food Chem., 2021, 353:129366.

    3. [3]

      LAI Y, BAI J, SHI X H, ZENG Y, XIAN Y, HOU J, JIN L. Talanta, 2013, 107:176-182.

    4. [4]

      LUST E B, BARTHOLD C, MALESKER M A, WICHMAN T O. J. Emergency Med., 2011, 40(2):198-207.

    5. [5]

    6. [6]

      POSYNIAK A, ZMUDZKI J, NIEDZIELSKA J. Anal. Chim. Acta, 2003, 483(1-2):61-67.

    7. [7]

      VELASCO-BEJARANO B, GÓMEZ-TAGLE A, NOGUEZ-CÓRDOVA M O, ZAMBRANO-ZARAGOZA M L, MIRANDAMOLINA A, BAUTISTA J, RODRÍGUEZ L, VELASCO-CARRILLO R. Food Chem., 2022, 370:131261.

    8. [8]

      LI G, FU Y, HAN X, LI X, LI C. J. Chromatogr. A, 2016, 1456:242-248.

    9. [9]

      ZHOU J, XU X, WANG Y. J. Chromatogr. B, 2007, 848(2):226-231.

    10. [10]

      ZHAO C, JIN G P, CHEN L L, LI Y, YU B. Food Chem., 2011, 129(2):595-600.

    11. [11]

      REN X, ZHANG F, CHEN F, YANG T. Food Agric. Immunol., 2009, 20(4):333-344.

    12. [12]

      LIU B, YAN H, QIAO F, GENG Y. J. Chromatogr. B, 2011, 879(1):90-94.

    13. [13]

      YE D, WU S, XU J, JIANG R, ZHU F, OUYANG G. J. Chromatogr. Sci., 2015, 54(2):112-118.

    14. [14]

      FAN L Y, CHEN Q, ZHANG W, CAO C X. Anal. Methods, 2013, 5(11):2848-2853.

    15. [15]

      YANG X, FENG B, YANG P, DING Y, CHEN Y, FEI J. Food Chem., 2014, 145:619-624.

    16. [16]

      BAI W, HUANG H, LI Y, ZHANG H, LIANG B, GUO R, DU L, ZHANG Z. Electrochim. Acta, 2014, 117:322-328.

    17. [17]

      WANG H, ZHANG Y, LI H, DU B, MA H, WU D, WEI Q. Biosens. Bioelectron., 2013, 49:14-19.

    18. [18]

      ZHANG F, ZHANG J, MA J, ZHAO X, LI Y, LI R. J. Colloid Interface Sci., 2021, 593:32-40.

    19. [19]

      NIRUMAND L, FARHADI S, ZABARDASTI A, KHATAEE A. Ultrason. Sonochem., 2018, 42:647-658.

    20. [20]

      ZHANG H, LI J, LI Z, SONG Y, ZHU S, WANG J, SUN Y, ZHANG X, LIN B. J. Phys. Chem. Solids, 2022, 160:110336.

    21. [21]

      MA Z, WU D, HAN X, WANG H, ZHANG L, GAO Z, XU F, JIANG K. J. CO2 Util., 2019, 32:251-258.

    22. [22]

      RAZAVI S A A, MASOOMI M Y, MORSALI A. Ultrason. Sonochem., 2017, 37:502-508.

    23. [23]

      DARABI R, SHABANI-NOOSHABADI M, KARIMI-MALEH H, GHOLAMI A. Food Chem., 2022, 368:130811.

    24. [24]

      XIE Y Q, ZONG S W, LU L, ZHANG K L. Polyhedron, 2022, 226:116095.

    25. [25]

      DLAMINI Z W, VALLABHAPURAPU S, WU S, MAHULE T S, SRIVIVASAN A, VALLABHAPURAPU V S. Solid State Commun., 2022, 345:114677.

    26. [26]

      ARUL P, JOHN S A. J. Electroanal. Chem., 2018, 829:168-176.

    27. [27]

      CHEN S, WANG C, ZHANG M, ZHANG W, QI J, SUN X, WANG L, LI J. J. Hazard. Mater., 2020, 390:122157.

    28. [28]

    29. [29]

      HAO J, WU W, WANG Q, YAN D, LIU G, PENG S. J. Mater. Chem. A, 2020, 8(15):7192-7196.

    30. [30]

      LV D, SU S, ZHANG S, CAI D. J. Alloys Compd., 2022, 912:165143.

    31. [31]

      HUANG W, CHEN Y, WU L, LONG M, LIN Z, SU Q, ZHENG F, WU S, LI H, YU G. Talanta, 2022, 247:123596.

    32. [32]

      XIE Y, FAN L, LIU W, ZHANG Q, HUANG G. Particuology, 2023, 72:134-144.

    33. [33]

      PENG G, GAO F, ZOU J, WANG X, GAO Y, ZHOU H, LIU S, LI M, LU L. J. Electroanal. Chem., 2022, 918:116462.

    34. [34]

      YAN Q, SUN R M, WANG L P, FENG J J, ZHANG L, WANG A J. J. Colloid Interface Sci., 2021, 603:559-571.

    35. [35]

      ASIF M, AZIZ A, WANG H, WANG Z, WANG W, AJMAL M, XIAO F, CHEN X, LIU H. Microchim. Acta, 2019, 186(2):61.

    36. [36]

      SLATTERY S J, BLAHO J K, LEHNES J, GOLDSBY K A. Coord. Chem. Rev., 1998, 174(1):391-416.

    37. [37]

      RICHARDS J A, WHITSON P E, EVANS D H. J. Electroanal. Chem., 1975, 63(3):311-327.

    38. [38]

      ZHANG J W, ZHANG X. J. Alloys Compd., 2020, 842:155934.

    39. [39]

      YOLA M L, ATAR N. Mater. Sci. Eng., C, 2019, 96:669-676.

    40. [40]

      ZHAO C, JIN G P, CHEN L L, LI Y, YU B. Food Chem., 2011, 129(2):595-600.

    41. [41]

      JING H, OUYANG H, LI W, LONG Y. Microchem. J., 2022, 178:107359.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    10. [10]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    11. [11]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

Metrics
  • PDF Downloads(13)
  • Abstract views(1386)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return