Citation:
TIAN Wen-Shuai, CAO Hou-Yong, GAO Jie, ZHANG Yu, CAI Wu-Qi, WANG Fan, HUI Yu, WANG Xing-An, ZHANG Xu-Xin, SUN Jing, LI Yan-Zhao. Research Progress of Wearable Flexible Sensors Based on Polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(11): 1712-1722.
doi:
10.19756/j.issn.0253-3820.221274
-
A wearable flexible sensor is a device that is tightly attached to the skin or tissue of human to collect physiological parameters of the body for data analysis and reference in real time, which has important applications in the fields of medical care, diagnosis and treatment, etc. With the advantages such as stable chemical properties, strong thermal stability, good transparency and biocompatibility, polydimethylsiloxane (PDMS) has been proved to be the best choice for wearable flexible sensors substrates,which can achieve different functions through surface modification and overall characteristic customization. In this paper, the research progress of wearable flexible sensors based on PDMS in recent years is reviewed, as well as the working principles of the sensors and performance comparisons of conductive modified materials. The performance parameters, advantages and disadvantages of different conductive modified materials are exhibited and compared due to their significance in the sensors. This review also introduces different sensors from the application aspect, such as photosensors, temperature sensors, strain sensors, pressure sensors and biochemical sensors. Finally, the challenges and development directions of wearable sensors are prospected.
-
Keywords:
- Wearable,
- Flexible sensors,
- Polydimethylsiloxane,
- Health monitoring,
- Review
-
-
-
[1]
-
[2]
-
[3]
ROSSI E, SALAHSHOOR Z, HO K V, LIN C H, ERREA M I, FIDALGO M M. Microchim. Acta, 2021, 188(3):70.
-
[4]
KUZUBASOGLU B A, BAHADIR S K. Sens. Actuators, A, 2020, 315:112282.
-
[5]
ZHANG J, ZHANG Y, LI Y, WANG P. Polym. Rev., 2022, 62(1):65-94.
-
[6]
HAN T, NAG A, AFSARIMANESH N, MUKHOPADHYAY S C, KUNDU S, XU Y Z. Sensors, 2019, 19(6):1462.
-
[7]
KATARIA D, SANCHEZ G, NAIDU J P, SRINIVASAN M A. IETE J. Res., 2021, 67:646-653.
-
[8]
KWAK Y H, KIM W, PARK K B, KIM K, SEO S. Biosens. Bioelectron., 2017, 94:250-255.
-
[9]
WANG X F, YU J H, CUI Y X, LI W. Sens. Actuators, A, 2021, 330:112838.
-
[10]
PATEL S, PARK H, BONATO P, CHAN L, RODGERS M. J. Neuroeng. Rehabil., 2012, 9:21.
-
[11]
QI D P, ZHANG K Y, TIAN G W, JIANG B, HUANG Y D. Adv.Mater., 2021, 33(6):2003155.
-
[12]
SHER M, ZHUANG R, DEMIRCI U, ASGHAR W. Expert. Rev. Mol. Diagn., 2017, 17(4):351-366.
-
[13]
YANG Y B, YANG X D, TAN Y N, YUAN Q. Nano Res., 2017, 10(5):1560-1583.
-
[14]
CHEN J, ZHENG J H, GAO Q W, ZHANG J J, ZHANG J Y, OMISOREO M, WANG L, LI H. Appl. Sci., 2018, 8(3):345.
-
[15]
XU C, MIAO L M, WANG H B, REN Z Y, GUO H, ZHANG H X. IEEE Trans. Nanotechnol., 2021, 20:137-142.
-
[16]
CHEN S W, QI J M, FAN S C, QIAO Z, YEO J C, LIM C T. Adv. Healthcare Mater., 2021, 10(17):2100116.
-
[17]
NGUYEN T D, LEE J S. Sensors, 2022, 22(1):50.
-
[18]
XIANG L, ZENG X W, XIA F, JIN W L, LIU Y D, HU Y F. ACS Nano, 2020, 14(6):6449-6469.
-
[19]
JEONG Y R, LEE G, PARK H, HA J S. Acc. Chem. Res., 2019, 52(1):91-99.
-
[20]
VAN DEN B J, DE KOK M, KOETSE M, CAUWE M, VERPLANCKE R, BOSSUYT F, JABLONSKI M, VANFLETEREN J. Solid-State. Electron., 2015, 113:116-120.
-
[21]
SAVAGATRUP S, PRINTZ A D, O'CONNOR T F, ZARETSKI A V, LIPOMI D J. Chem. Mater., 2014, 26(10):3028-3041.
-
[22]
SCHROEDER V, SAVAGATRUP S, HE M, LING S B, SWAGER T M. Chem. Rev., 2019, 119(1):599-663.
-
[23]
JUSTINO C I L, COMES A R, FREITAS A C, DUARTE A C, ROCHA-SANTOS T A P. TrAC, Trends Anal. Chem., 2017, 91:53-66.
-
[24]
BIALAS K, MOSCHOU D, MARKEN F, ESTRELA P. Microchim. Acta, 2022, 189(4):172.
-
[25]
PAVEL I A, LAKARD S, LAKARD B. Chemosensors, 2022, 10(3):97.
-
[26]
CHEN X L, ZENG Q, SHAO J Y, LI S, LI X M, TIAN H M, LIU G F, NIE B B, LUO Y S. ACS Appl. Mater. Interfaces, 2021, 13(29):34637-34647.
-
[27]
WANG D, SHENG B, PENG L N, HUANG Y S, NI Z J. Polymers, 2019, 11(9):1433.
-
[28]
-
[29]
YANG T, DENG W L, CHU X, WANG X, HU Y T, FAN X, SONG J, GAO Y Y, ZHANG B B, TIAN G, XIONG D, ZHONG S, TANG L H, HU Y H, YANG W Q. ACS Nano, 2021, 15(7):11555-11563.
-
[30]
ZHANG K M, SUN J W, SONG J Y, GAO C H, WANG Z, SONG C X, WU Y M, LIU Y T. ACS Appl. Mater. Interfaces, 2020, 12(40):45306-45314.
-
[31]
FERRIER D C, HONEYCHURCH K C. Biosensors, 2021, 11(12):486.
-
[32]
MICHEL T R, CAPASSO M J, CAVUSOGLU M E, DECKER J, ZEPPILLI D, ZHU C, BAKRANIA S, KADLOWEC J A, XUE W. Microsyst. Technol., 2020, 26(4):1101-1112.
-
[33]
LIU K, YANG C, SONG L H, WANG Y, WEI Q, ALAMUSI, DENG Q B, HU N. Compos. Sci. Technol., 2022, 218:109148.
-
[34]
CHEN J W, ZHU Y T, JIANG W. Compos. Sci. Technol., 2020, 186:107938.
-
[35]
SINGH E, MEYYAPPAN M, NALWA H S. ACS Appl. Mater. Interfaces, 2017, 9(40):34544-34586.
-
[36]
JIRICKOVA A, JANKOVSKY O, SOFER Z, SEDMIDUBSKY D. Materials, 2022, 15(3):920.
-
[37]
TIAN H, SHU Y, CUI Y L, MI W T, YANG Y, XIE D, REN T L. Nanoscale, 2014, 6(2):699-705.
-
[38]
GUAN H, MENG J W, CHENG Z Y, WANG X Q. ACS Appl. Mater. Interfaces, 2020, 12(41):46357-46365.
-
[39]
WANG H H, CEN Y M, ZENG X Q. ACS Appl. Mater. Interfaces, 2021, 13(24):28538-28545.
-
[40]
MAO Y Y, JI B, CHEN G, HAO C X, ZHOU B P, TIAN Y Q. ACS Appl. Nano Mater., 2019, 2(5):3196-3205.
-
[41]
MAZUMDER V, CHI M F, MORE K L, SUN S H. Angew. Chem., Int. Ed., 2010, 49(49):9368-9372.
-
[42]
ZHANG X M, YANG X L, WANG B. J. Mater. Sci-Mater. El., 2022, 33(10):8104-8113.
-
[43]
BAE C W, TOI P T, KIM B Y, LEE W I, LEE H B, HANIF A, LEE E H, LEE N E. ACS Appl. Mater. Interfaces, 2019, 11(16):14567-14575.
-
[44]
LUAN R F, AN H, CHEN C, XUE Y, GUO A L, CHU L, AHMAD W, LI X A. Z. Anorg. Allg. Chem., 2021, 647(9):1031-1037.
-
[45]
MEI J, BAO Z. Chem. Mater., 2014, 26(1):604-615.
-
[46]
WU H C, HONG C W, CHEN W C. Polym. Chem., 2016, 7(26):4378-4392.
-
[47]
TAN Z T, LI H W, HUANG Y N, GONG X, QI J N, LI J, CHEN X S, JI D Y, LV W B, LI L Q, HU W P. Composites, 2021, 143:106299.
-
[48]
QI D P, LIU Z Y, LIU Y, JIANG Y, LEOW W R, PAL M, PAN S W, YANG H, WANG Y, ZHANG X Q, YU J C, LI B, YU Z, WANG W, CHEN X D. Adv. Mater., 2017, 29(40):1702800.
-
[49]
ZHANG Y, HU Y, ZHU P, HAN F, ZHU Y, SUN R, WONG C P. ACS Appl. Mater. Interfaces, 2017, 9(41):35968-35976.
-
[50]
LEE M S, LEE K, KIM S Y, LEE H, PARK J, CHOI K H, KIM H K, KIM D G, LEE D Y, NAM S, PARK J U. Nano Lett., 2013, 13(6):2814-2821.
-
[51]
SEGEV-BAR M, HAICK H. ACS Nano, 2013, 7(10):8366-8378.
-
[52]
PUNEETHA P, MALLEM S P R, LEE Y W, SHIM J. ACS Appl. Mater. Interfaces, 2020, 12(32):36660-36669.
-
[53]
WANG W, XIANG C X, ZHU Q, ZHONG W B, LI M F, YAN K L, WANG D. ACS Appl. Mater. Interfaces, 2018, 10(32):27215-27223.
-
[54]
YU Q Y, ZHANG P, CHEN Y C. Micromachines, 2021, 12(10):1219.
-
[55]
SONG Y H, DONG H, LIU W X, FU X, FU Z, LI P L, CHEN L, AHMAD Z, LIU J, CHEN X, CHANG M W. ACS. Appl. Polym. Mater., 2022, 4(2):868-878
-
[56]
ZHENG Q B, LEE J H, SHEN X, CHEN X D, KIM J K. Mater. Today, 2020, 36:158-179.
-
[57]
KIM T Y, SUH W, JEONG U. Mat. Sci. Eng. R., 2021, 146:100640.
-
[58]
LI Z W, CHENG L, SONG Q K. IEEE. Sens. J., 2021, 21(4):4365-4376.
-
[59]
HU Y F, HUANG T Q, ZHANG H J, LIN H J, ZHANG Y, KE L W, CAO W, HU K, DING Y, WANG X Y, RUI K, ZHU J X, HUANG W. ACS Appl. Mater. Interfaces, 2021, 13(20):23905-23914.
-
[60]
LEE M E, ARMANI A M. ACS Sens., 2016, 1(10):1251-1255.
-
[61]
RYU D, MONGARE A. Materials, 2018, 11(10):1970.
-
[62]
HERBERT R, LIM H R, YEO W H. ACS Appl. Mater. Interfaces, 2020, 12(22):25020-25030.
-
[63]
LI T Y, LI J H, ZHONG A, HAN F, SUN R, WONG C P, NIU F F, ZHANG G P, JIN Y F. Sens. Actuators, A, 2020, 306:111959.
-
[64]
HAN M, LEE J, KIM J K, AN H K, KANG S W, JUNG D. Sens. Actuators, A, 2020, 305:111941.
-
[65]
WANG F F, TAN Y H, PENG H Y, MENG F C, YAO X G. Mater. Lett., 2021, 303:130512.
-
[66]
LI W, JIN X, HAN X, LI Y R, WANG W Y, LIN T, ZHU Z T. ACS Appl. Mater. Interfaces, 2021, 13(16):19211-19220.
-
[67]
PEGAN J D, ZHANG J, CHU M, NGUYEN T, PARK S J, PAUL A, KIM J, BACHMAN M, KHINE M. Nanoscale, 2016, 8(39):17295-17303.
-
[68]
LIU R P, HE L, CAO M J, SUN Z C, ZHU R Q, LI Y. Front. Chem., 2021, 9:539678.
-
[69]
YANG J, WEI D P, TANG L L, SONG X F, LUO W, CHU J, GAO T P, SHI H F, DU C L. RSC Adv., 2015, 5(32):25609-25615.
-
[70]
LI Y C, ZHENG C R, LIU S, HUANG L, FANG T S, LI J X Z, XU F, LI F. ACS Appl. Mater. Interfaces, 2020, 12(21):23764-23773.
-
[71]
GAO Y J, YU L T, YEO J C, LIM C T. Adv. Mater., 2020, 32(15):1902133.
-
[72]
SHEN G Z. Prog. Nat. Sci.-Mater., 2021, 31(6):872-882.
-
[73]
SHU Y, SHANG Z J, SU T, ZHANG S H, LU Q, XU Q, HU X Y. Analyst, 2022, 147(7):1440-1448.
-
[74]
HUI X, XUAN X, KIM J, PARK J Y. Electrochim. Acta, 2019, 328:135066.
-
[75]
LIU Q, SHI W S, TIAN L, SU M J, JIANG M Y, LI J, GU H Y, YU C M. Anal. Chim. Acta, 2021, 1184:339010.
-
[76]
ZHAO T M, ZHENG C W, HE H X, GUAN H Y, ZHONG T Y, XING L L, XUE X Y. Smart Mater. Struct., 2019, 28(8):085015.
-
[77]
ZHAO Z T, HUANG Y Y, LI Q G, MEI H J, ZHU F L, GONG W P. Appl. Surf. Sci., 2021, 565:150553.
-
[78]
YANG A N, YAN F. ACS Appl. Electron. Mater., 2021, 3(1):53-67.
-
[1]
-
-
-
[1]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[2]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[3]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[4]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[5]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[6]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[7]
Jiashuang Lu , Xiaoyang Xu , Youqing He , Mingyue Wu , Ruixin Shi , Wenfang Yu , Hang Lu , Ji Liu , Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143
-
[8]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[9]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[10]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[11]
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
-
[12]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[13]
Weijie Yang , Mansheng Chen , Chen Xu , Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072
-
[14]
Xiaoyi Sun , Duohang Bi , Hankun Qiao , Yijing Liu , Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006
-
[15]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[16]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[17]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[20]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
-
[1]
Metrics
- PDF Downloads(18)
- Abstract views(1279)
- HTML views(194)
Login In
DownLoad: