基于上转换纳米粒子-金纳米棒的荧光共振能量转移免疫分析法用于癌胚抗原检测

于绍楠 任玲玲 任立群 白应洁 刘桂锋 张婳 王振新

引用本文: 于绍楠, 任玲玲, 任立群, 白应洁, 刘桂锋, 张婳, 王振新. 基于上转换纳米粒子-金纳米棒的荧光共振能量转移免疫分析法用于癌胚抗原检测[J]. 分析化学, 2022, 50(9): 1299-1307. doi: 10.19756/j.issn.0253-3820.221249 shu
Citation:  YU Shao-Nan,  REN Ling-Ling,  REN Li-Qun,  BAI Ying-Jie,  LIU Gui-Feng,  ZHANG Hua,  WANG Zhen-Xin. Upconversion Nanoparticles/Gold Nanorods-based Fluorescence Resonance Energy Transfer Immunoassay for Detection of Carcinoembryonic Antigen[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1299-1307. doi: 10.19756/j.issn.0253-3820.221249 shu

基于上转换纳米粒子-金纳米棒的荧光共振能量转移免疫分析法用于癌胚抗原检测

    通讯作者: 刘桂锋,E-mail:gfliu@jlu.edu.cn; 张婳,E-mail:zhanghua@ciac.ac.cn
  • 基金项目:

    吴阶平医学基金项目(Nos.320675019089-40,320675019089-38)和国家自然科学基金项目(No.61901438)资助。

摘要: 构建了一种基于上转换纳米粒子(Upconversion nanoparticles,UCNP)-金纳米棒(Gold nanorods,GNR)的荧光共振能量转移(Fluorescence resonance energy transfer,FRET)免疫分析方法用于灵敏检测癌胚抗原(Carcinoembryonic antigen,CEA)。以UCNP作为供体,GNR作为受体,将CEA抗体通过共价偶联的方式分别修饰在UCNP和GNR表面,形成抗体偶联物UCNP-cAb和GNR-dAb,当引入CEA后,通过抗原-抗体相互作用形成"三明治"夹心复合物,导致UCNP与GNR相互靠近发生FRET,并且荧光淬灭效率与CEA浓度呈正相关。基于此建立了检测CEA的FRET免疫分析方法,线性范围为0.01~100 ng/mL,检出限(S/N=3)为0.01 ng/mL。采用构建的FRET免疫分析方法实现了对缓冲溶液和人血清样本中的CEA的检测。本方法具有良好的选择性,有望用于临床检测,为相关癌症的早期诊断、治疗及预后监测等提供了新方法。

English


    1. [1]

      CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H. CA-Cancer J. Clin., 2016, 66:115-132.CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H. CA-Cancer J. Clin., 2016, 66:115-132.

    2. [2]

      ALTINTAS Z, TOTHILL I. Sens. Actuators, B, 2013, 188:988-998.ALTINTAS Z, TOTHILL I. Sens. Actuators, B, 2013, 188:988-998.

    3. [3]

      SHEN G Y, WANG H, DENG T, SHEN G L, YU R Q. Talanta, 2005, 67:217-220.SHEN G Y, WANG H, DENG T, SHEN G L, YU R Q. Talanta, 2005, 67:217-220.

    4. [4]

      GRUNNET M, SORENSEN J B. Lung Cancer, 2012, 76:138-143.GRUNNET M, SORENSEN J B. Lung Cancer, 2012, 76:138-143.

    5. [5]

      FERRARI M. Nat. Rev. Cancer, 2005, 5:161-171.FERRARI M. Nat. Rev. Cancer, 2005, 5:161-171.

    6. [6]

      DUFFY M J. Clin. Chem., 2001, 4:624-630.DUFFY M J. Clin. Chem., 2001, 4:624-630.

    7. [7]

      HAIDOPOULOS D, KONSTADOULAKIS M M, ANTONAKIS P T, ALEXIOU D G, MANOURAS A M, KATSARAGAKIS S M, ANDROULAKIS G F. Euro. J. Surg. Oncol., 2000, 26:742-746.HAIDOPOULOS D, KONSTADOULAKIS M M, ANTONAKIS P T, ALEXIOU D G, MANOURAS A M, KATSARAGAKIS S M, ANDROULAKIS G F. Euro. J. Surg. Oncol., 2000, 26:742-746.

    8. [8]

      ZHAO L, XU S, FJAERTOFT G, PAUKSEN K, HAKANSSON L, VENGE P. J. Immunol. Methods, 2004, 293:207-214.ZHAO L, XU S, FJAERTOFT G, PAUKSEN K, HAKANSSON L, VENGE P. J. Immunol. Methods, 2004, 293:207-214.

    9. [9]

      THOMSON D M, KRUPEY J, FREEDMAN S O, GOLD P. Proc. Natl. Acad. Sci. U.S.A., 1969, 64:161-167.THOMSON D M, KRUPEY J, FREEDMAN S O, GOLD P. Proc. Natl. Acad. Sci. U.S.A., 1969, 64:161-167.

    10. [10]

      NIKOOYEH B, SAMIEE S M, FARZAMI M R, ALAVIMAJD H, ZAHEDIRAD M, KALAYI A, SHARIATZADEH N, BOROUMAND N, GOLSHEKAN E, GHOLAMIAN Y, NEYESTANIET T R. J. Clin. Lab. Anal., 2017, 31(6):e22117.NIKOOYEH B, SAMIEE S M, FARZAMI M R, ALAVIMAJD H, ZAHEDIRAD M, KALAYI A, SHARIATZADEH N, BOROUMAND N, GOLSHEKAN E, GHOLAMIAN Y, NEYESTANIET T R. J. Clin. Lab. Anal., 2017, 31(6):e22117.

    11. [11]

      LIN J H, YAN F, HU X Y, JU H X. J. Immunol. Methods, 2004, 291:165-174.LIN J H, YAN F, HU X Y, JU H X. J. Immunol. Methods, 2004, 291:165-174.

    12. [12]

      LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.

    13. [13]

      OLOFSSON E, ZENCI V, ATHLIN S. J. Clin. Microbiol., 2019, 57:953.OLOFSSON E, ZENCI V, ATHLIN S. J. Clin. Microbiol., 2019, 57:953.

    14. [14]

      WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.

    15. [15]

      WANG L, LI L, CAO D. Sens. Actuators, B, 2017, 239:1307-1317.WANG L, LI L, CAO D. Sens. Actuators, B, 2017, 239:1307-1317.

    16. [16]

      HU Q, DUAN C, WU J J, SU D D, ZENG L T, SHENG R L. Anal. Chem., 2018, 90(14):8686-8691.HU Q, DUAN C, WU J J, SU D D, ZENG L T, SHENG R L. Anal. Chem., 2018, 90(14):8686-8691.

    17. [17]

      GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LI X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LI X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.

    18. [18]

      JIN B R, YANG Y X, HE R Y, PARK Y, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.JIN B R, YANG Y X, HE R Y, PARK Y, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.

    19. [19]

      HE W H, YOU M L, LI Z D, CAO L, XU F, LI F, LI A. Sens. Actuators, B, 2021, 334:129673.HE W H, YOU M L, LI Z D, CAO L, XU F, LI F, LI A. Sens. Actuators, B, 2021, 334:129673.

    20. [20]

      LIU L, ZHANG H, WANG Z X, SONG D Q. Biosens. Bioelectron., 2019, 141:111403.LIU L, ZHANG H, WANG Z X, SONG D Q. Biosens. Bioelectron., 2019, 141:111403.

    21. [21]

      SHANG Y T, XIANG X R, YE Q H, WU Q P, ZHANG J M, LIN J M. TrAC, Trend Anal. Chem., 2022, 147:116509.SHANG Y T, XIANG X R, YE Q H, WU Q P, ZHANG J M, LIN J M. TrAC, Trend Anal. Chem., 2022, 147:116509.

    22. [22]

      WU Y M, CHAN S Y, XU J H, LIU X G. Chem.-Asian J., 2021, 16(18):2596-2609.WU Y M, CHAN S Y, XU J H, LIU X G. Chem.-Asian J., 2021, 16(18):2596-2609.

    23. [23]

      ANSARI A A, PARCHUR A K, THORAT N D, CHEN G Y. Coordin. Chem. Rev., 2021, 440:213971.ANSARI A A, PARCHUR A K, THORAT N D, CHEN G Y. Coordin. Chem. Rev., 2021, 440:213971.

    24. [24]

      MO J, SHEN L, XU Q, ZENG J, SHA J, HU T, BI K, CHEN Y. Nanomaterials, 2019, 9:1700.MO J, SHEN L, XU Q, ZENG J, SHA J, HU T, BI K, CHEN Y. Nanomaterials, 2019, 9:1700.

    25. [25]

      DONG H, SUN L D, YAN C H. Front. Chem., 2021, 8:619377.DONG H, SUN L D, YAN C H. Front. Chem., 2021, 8:619377.

    26. [26]

      MOON H, KUMAR D, KIM H, SIM C, CHANG J H, KIM J M, KIM H, LIM D K. ACS Nano, 2015, 9(3):2711-2719.MOON H, KUMAR D, KIM H, SIM C, CHANG J H, KIM J M, KIM H, LIM D K. ACS Nano, 2015, 9(3):2711-2719.

    27. [27]

      RAO W Y, LI Q, WANG Y Z, LI T, WU L J. ACS Nano, 2015, 9(3):2783-2791.RAO W Y, LI Q, WANG Y Z, LI T, WU L J. ACS Nano, 2015, 9(3):2783-2791.

    28. [28]

      NIKOOBAKHT B, EL-SAYED M A. Chem. Mater., 2003, 15(10):1957-1962.NIKOOBAKHT B, EL-SAYED M A. Chem. Mater., 2003, 15(10):1957-1962.

    29. [29]

      ZHANG Hua, LI Qun, LIU Gui-Feng. Chin. J. Anal. Chem., 2020, 48(8):1018-1024. 张婳, 李群, 刘桂锋. 分析化学, 2020, 48(8):1018-1024.

    30. [30]

      ZHENG J P, CHENG X Z, ZHANG H, BAI X P, AI R Q, SHAO L, WANG J F. Chem. Rev., 2021, 121(21):13342-13453.ZHENG J P, CHENG X Z, ZHANG H, BAI X P, AI R Q, SHAO L, WANG J F. Chem. Rev., 2021, 121(21):13342-13453.

    31. [31]

      YUAN F, CHEN H Q, XU J, ZHANG Y Y, WU Y, WANG L. Chem.-Eur. J, 2014, 20(10):2888-2894.YUAN F, CHEN H Q, XU J, ZHANG Y Y, WU Y, WANG L. Chem.-Eur. J, 2014, 20(10):2888-2894.

    32. [32]

      LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.

    33. [33]

      WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.

    34. [34]

      WU Y W, CHEN X L, LUO X G, YANG M, HOU C J, HUO D Q. Anal. Chim. Acta, 2021, 1183:339000.WU Y W, CHEN X L, LUO X G, YANG M, HOU C J, HUO D Q. Anal. Chim. Acta, 2021, 1183:339000.

    35. [35]

      XIANG W W, ZHANG Z J, WENG W Q, WU B D, CHENG J, SHI L, SUN H W, GAO L, SHI K Q. Anal. Chim. Acta, 2020, 1127:156-162.XIANG W W, ZHANG Z J, WENG W Q, WU B D, CHENG J, SHI L, SUN H W, GAO L, SHI K Q. Anal. Chim. Acta, 2020, 1127:156-162.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  663
  • HTML全文浏览量:  67
文章相关
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章