Citation:
YU Shao-Nan, REN Ling-Ling, REN Li-Qun, BAI Ying-Jie, LIU Gui-Feng, ZHANG Hua, WANG Zhen-Xin. Upconversion Nanoparticles/Gold Nanorods-based Fluorescence Resonance Energy Transfer Immunoassay for Detection of Carcinoembryonic Antigen[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(9): 1299-1307.
doi:
10.19756/j.issn.0253-3820.221249
-
A fluorescence resonance energy transfer (FRET) immunoassay based on upconversion nanoparticles (UCNP) and gold nanorods (GNR) was constructed for sensitive detection of carcinoembryonic antigen (CEA). UCNP was employed as the donor and GNR was employed as the acceptor. The CEA antibody was covalently attached on the surface of UCNP and GNR to form UCNP-cAb and GNR-dAb conjugates, respectively. After introduction of CEA, a "sandwich" complex was formed through the antigen-antibody specific interaction, which resulted in the close proximity of UCNP and GNR to generate FRET. And the fluorescence quenching efficiency was positively correlated with the concentration of CEA. The constructed FRET immunoassay realized the detection of CEA in both buffer solution and human serum samples with a limit of detection (S/N=3) of 0.01 ng/mL, a linear range from 0.01 ng/mL to 100 ng/mL and good selectivity. It was expected that this FRET immunoassay could be further used in clinical applications and provided new methods for early diagnosis, treatment and prognosis monitoring of related cancers.
-
-
-
[1]
CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H. CA-Cancer J. Clin., 2016, 66:115-132.
-
[2]
ALTINTAS Z, TOTHILL I. Sens. Actuators, B, 2013, 188:988-998.
-
[3]
SHEN G Y, WANG H, DENG T, SHEN G L, YU R Q. Talanta, 2005, 67:217-220.
-
[4]
GRUNNET M, SORENSEN J B. Lung Cancer, 2012, 76:138-143.
-
[5]
FERRARI M. Nat. Rev. Cancer, 2005, 5:161-171.
-
[6]
DUFFY M J. Clin. Chem., 2001, 4:624-630.
-
[7]
HAIDOPOULOS D, KONSTADOULAKIS M M, ANTONAKIS P T, ALEXIOU D G, MANOURAS A M, KATSARAGAKIS S M, ANDROULAKIS G F. Euro. J. Surg. Oncol., 2000, 26:742-746.
-
[8]
ZHAO L, XU S, FJAERTOFT G, PAUKSEN K, HAKANSSON L, VENGE P. J. Immunol. Methods, 2004, 293:207-214.
-
[9]
THOMSON D M, KRUPEY J, FREEDMAN S O, GOLD P. Proc. Natl. Acad. Sci. U.S.A., 1969, 64:161-167.
-
[10]
NIKOOYEH B, SAMIEE S M, FARZAMI M R, ALAVIMAJD H, ZAHEDIRAD M, KALAYI A, SHARIATZADEH N, BOROUMAND N, GOLSHEKAN E, GHOLAMIAN Y, NEYESTANIET T R. J. Clin. Lab. Anal., 2017, 31(6):e22117.
-
[11]
LIN J H, YAN F, HU X Y, JU H X. J. Immunol. Methods, 2004, 291:165-174.
-
[12]
LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.
-
[13]
OLOFSSON E, ZENCI V, ATHLIN S. J. Clin. Microbiol., 2019, 57:953.
-
[14]
WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.
-
[15]
WANG L, LI L, CAO D. Sens. Actuators, B, 2017, 239:1307-1317.
-
[16]
HU Q, DUAN C, WU J J, SU D D, ZENG L T, SHENG R L. Anal. Chem., 2018, 90(14):8686-8691.
-
[17]
GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LI X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.
-
[18]
JIN B R, YANG Y X, HE R Y, PARK Y, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.
-
[19]
HE W H, YOU M L, LI Z D, CAO L, XU F, LI F, LI A. Sens. Actuators, B, 2021, 334:129673.
-
[20]
LIU L, ZHANG H, WANG Z X, SONG D Q. Biosens. Bioelectron., 2019, 141:111403.
-
[21]
SHANG Y T, XIANG X R, YE Q H, WU Q P, ZHANG J M, LIN J M. TrAC, Trend Anal. Chem., 2022, 147:116509.
-
[22]
WU Y M, CHAN S Y, XU J H, LIU X G. Chem.-Asian J., 2021, 16(18):2596-2609.
-
[23]
ANSARI A A, PARCHUR A K, THORAT N D, CHEN G Y. Coordin. Chem. Rev., 2021, 440:213971.
-
[24]
MO J, SHEN L, XU Q, ZENG J, SHA J, HU T, BI K, CHEN Y. Nanomaterials, 2019, 9:1700.
-
[25]
DONG H, SUN L D, YAN C H. Front. Chem., 2021, 8:619377.
-
[26]
MOON H, KUMAR D, KIM H, SIM C, CHANG J H, KIM J M, KIM H, LIM D K. ACS Nano, 2015, 9(3):2711-2719.
-
[27]
RAO W Y, LI Q, WANG Y Z, LI T, WU L J. ACS Nano, 2015, 9(3):2783-2791.
-
[28]
NIKOOBAKHT B, EL-SAYED M A. Chem. Mater., 2003, 15(10):1957-1962.
-
[29]
-
[30]
ZHENG J P, CHENG X Z, ZHANG H, BAI X P, AI R Q, SHAO L, WANG J F. Chem. Rev., 2021, 121(21):13342-13453.
-
[31]
YUAN F, CHEN H Q, XU J, ZHANG Y Y, WU Y, WANG L. Chem.-Eur. J, 2014, 20(10):2888-2894.
-
[32]
LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.
-
[33]
WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.
-
[34]
WU Y W, CHEN X L, LUO X G, YANG M, HOU C J, HUO D Q. Anal. Chim. Acta, 2021, 1183:339000.
-
[35]
XIANG W W, ZHANG Z J, WENG W Q, WU B D, CHENG J, SHI L, SUN H W, GAO L, SHI K Q. Anal. Chim. Acta, 2020, 1127:156-162.
-
[1]
-
-
-
[1]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[2]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[3]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[4]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[5]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[6]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[7]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[8]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[9]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[10]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[11]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[12]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[13]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[14]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[15]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[16]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[17]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[18]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[19]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[20]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(437)
- HTML views(46)