Citation: HE Feng,  WANG Hai-Jie,  LI Teng-Fei,  DU Peng-Fei,  WANG Wei-Ting,  WANG Shou-Jing,  LIU Yao-Bo,  MA Yan-Li,  HU Peng,  TAN Tian-Yu,  HAN Qing. Magnetic Separation Immunosensor Based on Enzyme-linked Gold Nanocomposite Probe for Detection of Ractopamine[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 102-111. doi: 10.19756/j.issn.0253-3820.221241 shu

Magnetic Separation Immunosensor Based on Enzyme-linked Gold Nanocomposite Probe for Detection of Ractopamine

  • Corresponding author: LI Teng-Fei,  DU Peng-Fei, 
  • Received Date: 16 May 2022
    Revised Date: 7 October 2022

    Fund Project: Supported by the Natural Science Foundation of Shandong Province, China (No.ZR2020QC250), the Agriculture Industry Technology System (No.CARS-38), the Modern Agricultural Technology Industry System of Shandong Province, China (No.SDAIT-10-10) and the Key Research and Development Projects of Hebei Province, China (No.22325501D).

  • A magnetic separation competitive immunosensor based on novel enzyme-linked gold nanocomposite probes (E-GNPs) was constructed for detection of ractopamine (RAC). Through the specific interaction between streptavidin and biotin, horseradish peroxidase (HRP) was labeled on the antibody that was modified on the surface of gold nanoparticles (AuNPs) by electrostatic assembly method to obtain E-GNPs. Ovalbumin (OVA)-RAC hapten coated magnetic beads (MBs) was introduced for a competitive reaction, and quantitative analysis of the target was achieved by a color reaction. With the change of the concentration of target molecule RAC, the color of the enzyme-catalyzed substrate changed, and the concentration of RAC had a linear relationship with the color signal intensity. The UV-vis absorption spectroscopy characterization results showed that one E-GNP could carry 11 HRP molecules, which made the immunosensor highly sensitive. The prepared sensor was successfully used for detection of RAC with a detection limit of 1.75 pg/mL, showing 10 times higher sensitivity than that of traditional ELISA method. Cross-reaction experiments showed that the sensor had good selectivity for RAC, and could be applied to real samples such as pork, beef and mutton, with spiked recoveries ranging from 88.3% to 103.4%. This analytical method provided a new idea for rapid screening of RAC in animal-derived foods.
  • 加载中
    1. [1]

      BRAMELD J M, PARR T. Proc. Nutr. Soc., 2016, 75(3):242-246.

    2. [2]

      ZHANG W, WANG P L, SU X O. TrAC, Trends Anal. Chem., 2016, 85:1-16.

    3. [3]

      ZHAO Z, GU X, SU X O, LI J G, LI J, DONG Y C, YANG Y J, YAO T, QIN Y C. J. Anal. Toxicol., 2017, 41(1):60-64.

    4. [4]

      CHENG T Y D, SHELVER W L, HONG C C, MCCANN S E, DAVIS W, ZHANG Y L, AMBROSONE C B, SMITH D J. J. Agric. Food Chem., 2016, 64(40):7632-7639.

    5. [5]

      SLAVIN R E, YAEGER M J. Cardiovasc. Pathol., 2012, 21(4):334-338.

    6. [6]

    7. [7]

    8. [8]

      PENG C Y, ZHANG S W, WU C L, FENG Y, ZHAO D, WANG X Q, BAI Z Y. Food Chem., 2021, 355:129662.

    9. [9]

      XU J Q, XU S R, XIAO Y P, CHINGIN K, LU H Y, YAN R H, CHEN H W. Anal. Chem., 2017, 89(21):11252-11258.

    10. [10]

      VALESE A C, OLIVEIRA G A P, KLEEMANN C R, MOLOGNONI L, DAGUER H. J. Food Compos. Anal., 2016, 47:38-44.

    11. [11]

      HSIEH S Y, WANG C C, KOU H S, WU S M. J. Pharm. Biomed. Anal., 2017, 141:222-228.

    12. [12]

      HAN S J, ZHOU T J, YIN B J, HE P L. Microchim. Acta, 2018, 185(4):210.

    13. [13]

      DUAN N, GONG W H, WU S J, WANG Z P. Anal. Chim. Acta, 2017, 961:100-105.

    14. [14]

      XU M X, ZHAO W L, LIU J, HE T, HUANG J J, WANG J P. Anal. Lett., 2019, 52(11):1771-1787.

    15. [15]

      HE L H, GUO C P, SONG Y P, ZHANG S, WANG M H, PENG D L, FANG S M, ZHANG Z H, LIU C S. Microchim. Acta, 2017, 184(8):2919-2924.

    16. [16]

      SHELVER W L, SMITH D J. J. Immunoassay, 2000, 21(1):1-23.

    17. [17]

    18. [18]

      LI G L, ZHANG X L, ZHENG F P, LIU J H, WU D. Food Chem., 2020, 332:127431.

    19. [19]

      DUAN N, LI C X, SONG M Q, WANG Z P, ZHU C Q, WU S J. Spectrochim. Acta, Part A, 2022, 265:120342.

    20. [20]

      YANG F F, XU L, DIAS A C P, ZHANG X Y. Food Chem., 2021, 350:129196.

    21. [21]

      GUO Q, HAN J J, SHAN S, LIU D F, WU S S, XIONG Y H, LAI W H. Biosens. Bioelectron., 2016, 86:990-995.

    22. [22]

      CHEN S, ZHANG J B, GAN N, HU F T, LI T H, CAO Y T, PAN D D. Microchim. Acta, 2015, 182(3-4):815-822.

    23. [23]

      WANG Y B, QI Q Q, ZHOU J R, LI H, FU L L. Food Control, 2020, 110:106989.

    24. [24]

      YAN C, TENG J, LIU F Y, YAO B B, XU Z L, YAO L, CHEN W. Microchem. J., 2020, 159:105414.

    25. [25]

      DU P F, JIN M J, ZHANG C, CHEN G, CUI X Y, ZHANG Y D, ZHANG Y X, ZOU P, JIANG Z J, CAO X L, SHE Y X, JIN F, WANG J. Sens. Actuators, B, 2018, 256:457-464.

    26. [26]

      DU P F, JIN M J, CHEN G, ZHANG C, CUI X Y, ZHANG Y D, ZHANG Y X, ZOU P, JIANG Z J, CAO X L, SHE Y X, JIN F, WANG J. Microchim. Acta, 2017, 184(10):3705-3712.

    27. [27]

      GEORGANOPOULOU D G, CHANG L, NAM J M, THAXTON C S, MUFSON E J, KLEIN W L, MIRKIN C A. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(7):2273-2276.

    28. [28]

      ZHU J M, ZOU N L, ZHU D N, WANG J, JIN Q H, ZHAO J L, MAO H J. Clin. Chem., 2011, 57(12):1732-1738.

  • 加载中
    1. [1]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    12. [12]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    18. [18]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    19. [19]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(7)
  • Abstract views(872)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return