Citation: XU Yong-Hua,  WANG Na,  LIU Jin-Ming. Research on Rapid Determination of Lignocellulosic Contents in Corn Stover Using Near Infrared Spectroscopy Based on Spectral Intervals Selection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1587-1596. doi: 10.19756/j.issn.0253-3820.221239 shu

Research on Rapid Determination of Lignocellulosic Contents in Corn Stover Using Near Infrared Spectroscopy Based on Spectral Intervals Selection

  • Corresponding author: LIU Jin-Ming, jinmingliu2008@126.com
  • Received Date: 15 May 2022
    Revised Date: 2 July 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.52076034), the Heilongjiang Province Science and Technology Plan, Provincial Academy Science and Technology Cooperation Project (No.YS20B01) and the Scientific Research Foundation for Talent of Heilongjiang Bayi Agricultural University (No.XDB202006).

  • The contents of lignocellulosic components (including cellulose, hemicellulose and lignin) have an important influence on the methane yield of anaerobic digestion (AD) with corn stover (CS) as feedstocks in biogas industry. Aiming at the time-consuming and high-cost issues of traditional chemical analytical techniques, the feasibility of near infrared spectroscopy (NIRS) combined with chemometrics methods to measure the contents of lignocellulose in corn stover was analyzed in this work. To improve the detection accuracy and efficiency of NIRS regressive model, the genetic simulated annealing interval support vector machine (GSA-iSVM) was constructed using genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS) and support vector machine (SVM), which was used for synchronous optimization of the NIRS characteristic intervals and SVM parameters. By comparison with the modeling performance of the characteristic spectral intervals selected by backward interval partial least squares and genetic simulated annealing interval partial least squares (GSA-iPLS), it was found that the calibration model for cellulose and lignin established by GSA-iSVM had the best predicted accuracy, and that of hemicellulose established by GSA-iPLS performed best. For the validation set, the determination coefficients of prediction, root mean squared error of prediction and residual predictive deviation of the best calibration models were 0.910, 0.881% and 3.283 for cellulose; 0.990, 0.707% and 10.235 for hemicellulose; and 0.939, 0.249% and 4.270 for lignin, respectively. The results indicated that NIRS coupled with characteristic intervals intelligent selection of GSA could be used as a reliable alternative strategy to measure contents of lignocellulosic components in the pretreated CS in AD process.
  • 加载中
    1. [1]

      CHU X, CHENG Q, XU Y, LUO L, WANG M, ZHENG G, ZHANG H, YI W, LIU X, SUN Y, SUN Y. Bioresource Technol., 2021, 341:125826.

    2. [2]

      YANG G, LI Y, ZHEN F, XU Y, LIU J, LI N, SUN Y, LUO L, WANG M, ZHANG L. Bioresource Technol., 2021, 326:124745.

    3. [3]

      JEONG S Y, LEE E J, BAN S E, LEE J W. Renew. Energ., 2021, 172:1341-1350.

    4. [4]

    5. [5]

      AI N, JIANG Y, OMAR S, WANG J, XIA L, REN J. Molecules, 2022, 27(2):335.

    6. [6]

      SERAFIM C C, GUERRA G L, MIZUBUTI I Y, DE CASTRO F A B, PRADO-CALIXTO O P, GALBEIRO S, PARRA A R P, BUMBIERIS V H, PERTILE S F N, REGO F C D. Semina:Cienc. Agrar., 2021, 42(3):1287-1302.

    7. [7]

      YU Y, ZHANG Q, HUANG J, ZHU J, LIU J. Infrared Phys. Technol., 2021, 116:103785.

    8. [8]

      MEENU M, ZHANG Y, KAMBOJ U, ZHAO S, CAO L, HE P, XU B. Foods, 2022, 11(1):43.

    9. [9]

      ZHANG Y Z, HUANG J P, ZHANG Q L, LIU J W, MENG Y L, YU Y. Appl. Optics, 2022, 61(12):3419-3428.

    10. [10]

      BOIDO E, FARINA L, CARRAU F, COZZOLINO D, DELLACASSA E. Food Chem., 2022, 387:132927.

    11. [11]

      WANG D, XIE L, YANG S X, TIAN F. Sensors, 2018, 18(10):3222.

    12. [12]

      JIN X, CHEN X, SHI C, LI M, GUAN Y, YU C Y, YAMADA T, SACKS E J, PENG J. Bioresource Technol., 2017, 241:603-609.

    13. [13]

      LI L, WANG Y, JIN S, LI M, CHEN Q, NING J, ZHANG Z. Spectrochim. Acta, Part A, 2021, 246:118991.

    14. [14]

      LIU J, JIN S, BAO C, SUN Y, LI W. Bioresource Technol., 2021, 321:124449.

    15. [15]

    16. [16]

      LEARDI R, NORGAARD L. J. Chemom., 2004, 18(11):486-497.

    17. [17]

    18. [18]

      GUAN R, YUAN H, YUAN S, YAN B, ZUO X, CHEN X, LI X. Bioresource Technol., 2022, 349:126615.

    19. [19]

      SUN Y, QU J, LI R, LI W, WANG Z, CHU X. J. Biobased Mater. Bioenergy, 2018, 12(5):432-440.

    20. [20]

      VAN SOEST P J, ROBERTSON J B, LEWIS B A. J. Dairy Sci., 1991, 74(10):3583-3597.

    21. [21]

      CHU X, AWASTHI M K, LIU Y, CHENG Q, QU J, SUN Y. Bioresource Technol., 2021, 320:124174.

    22. [22]

      ZHANG H, HU X, LIU L, WEI J, BIAN X. Spectrochim. Acta, Part A, 2022, 270:120841.

    23. [23]

      XIE S, DING F, CHEN S, WANG X, LI Y, MA K. Spectrochim. Acta, Part A, 2022, 273:120949.

    24. [24]

      MULRENNAN K, MUNIR N, CREEDON L, DONOVAN J, LYONS J G, MCAFEE M. Sensors, 2022, 22(8):2835.

    25. [25]

      SHUKLA S R, SHASHIKALA S, SUJATHA M. J. Near Infrared Spectrosc., 2021, 29(3):168-178.

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    3. [3]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    8. [8]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(15)
  • Abstract views(919)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return