Citation: YU Wen-Ze,  LI Qiu-Jin,  GONG Ji-Xian,  ZHANG Jian-Fei. Research Progress of Wearable Microfluidic Device for Sweat Sensing and Monitoring[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1723-1732. doi: 10.19756/j.issn.0253-3820.221232 shu

Research Progress of Wearable Microfluidic Device for Sweat Sensing and Monitoring

  • Corresponding author: LI Qiu-Jin, maldini@mail.nankai.edu.cn
  • Received Date: 12 May 2022
    Revised Date: 30 September 2022

    Fund Project: Supported by the National Key Research and Development Program of China (Nos.2017YFB0309800, 2016YFC0400503-02), the Nature Science Foundation of Tianjin, China (Nos.15JCYBJC18000, 18JCYBJC89600), the Xinjiang Autonomous Region Major Significant Project Foundation (No.2016A03006-3) and the Science and Technology Guidance Project of China National Textile and Apparel Council (No.2017011).

  • Flexible biosensor for real-time monitoring and tracking analysis has become an important technology for portable diagnosis platform. It has a very wide research prospect in the field of real-time portable detection. Among many flexible sensors, sweat sensor has become a research hotspot in wearable devices because of its convenient sampling and rich biological information in sweat. The analysis of biomarkers in sweat can provide important data information for individual physiological state.This paper summarizes the significance and the latest progress of wearable sweat sensor research. Based on the structure composition, microfluidic analysis device design and module integration of wearable sweat sensor, the related researches of sweat collection, sensing mechanism and signal processing system are discussed. Moreover, the applications of wearable sweat sensors in wellness monitoring, medical care, health status assessment are also investigated. In addition, the challenges and opportunities that flexible sweat sensors will face in the near future are discussed and analyzed.
  • 加载中
    1. [1]

      HEIKENFELD J. Nature, 2016, 529(7587):475-476.

    2. [2]

      SURENKOK O, KIN-ISLER A, AYTAR A, GULTEKIN Z. J. Sport Rehabil., 2008, 17(4):380-386.

    3. [3]

      IBARRA A, ASTBURY N M, OLLI K, ALHONIEMI E, TIIHONEN K. Appetite, 2015, 87:30-37.

    4. [4]

      OH T J, LIM S, KIM K M, MOON J H, CHOI S H, CHO Y M, PARK K S, JANG H, CHO N H. Clin. Endocrinol., 2017, 86(4):513-519.

    5. [5]

      KARPOVA E V, KARYAKINA E E, KARYAKIN A A. Talanta, 2020, 215:120922.

    6. [6]

      GONCALVESA C, MARSON F A L, MENDONCA R M H, BERTUZZO C S, PASCHOAL I A, RIBEIRO J D, RIBEIRO A F, LEVY C E. J. Pediatr., 2019, 95(4):443-450.

    7. [7]

      CHOI D H, THAXTON A, JEONG I C, KIM K, SOSNAY P R, CUTTING G R, SEARSON P C. J. Cystic Fibrosis, 2018, 17(4):e35-e38.

    8. [8]

      CHENG C, LI X, XU G, LU Y L, LOW S S, LIU G, ZHU L, LI C D, LIU Q J. Biosens. Bioelectron., 2021, 172(10):112782.

    9. [9]

      JIA J, XU C, PAN S, XIA S, WEI P, NOH H, ZHANG P, JIANG X. Sensors-Basel, 2018, 18(11):3775.

    10. [10]

      QIAO L, BENZIGAR M R, SUBRAMONY J A, LOVELL N H, LIU G. ACS Appl. Mater. Interfaces, 2020, 12(30):34337-34361.

    11. [11]

      BROTHERS M C, DEBROSSE M, GRIGSBY C C, NAIK R R, HUSSAIN S M, HEIKENFELD J, KIM S S. Acc. Chem. Res., 2019, 52(2):297-306.

    12. [12]

      LV J, JEERAPAN I, TEHRANI F, YIN L, SILVA-LOPEZ C A, JANG J H, JOSHUIA D, SHAH R, LIANG Y, XIE L, SOTO F, CHEN C, KARSHALEV E, KONG C, YANG Z, WANG J. Energy Environ. Sci., 2018, 11(12):3431-3442.

    13. [13]

      ARDALAN S, HOSSEINIFARD M, VOSOUGH M, GOLMOHAMMADI H. Biosens. Bioelectron., 2020, 168:112450.

    14. [14]

      COYLE S, LAU K, MOYNA N, O'GORMAN D, DIAMOND D, DI FRANCESCO F, COSTANZO D, SALVO P, TRIVELLA M G, DE ROSSI D E, TACCINI N, PARADISO R, PORCHET J, RIDOLFI A, LUPRANO J, CHUZEL C, LANIER T, REVOL-CAVALIER F, SCHOUMACKER S, MOURIER V, CHARTIER I, CONVERT R, DE-MONCUIT H, BINI C. IEEE Trans. Inf. Theory, 2010, 14(2):364-370.

    15. [15]

      SEKINE Y, KIM S B, ZHANG Y, BANDODKAR A J, XU S, CHOI J, IRIE M, RAY T R, KOHLI P, KOZAI N, SUGITA T, WU Y, LEE K, LEE K, GHAFFARI R, ROGERS J A. Lab Chip, 2018, 18(15):2178-2186.

    16. [16]

      HUESTIS M A, OYLER J M, CONE E J, WSTADIK A T, SCHOENDORFER D, JOSEPH R E. J. Chromatogr. B:Biomed. Sci. Appl., 1999, 733(1-2):247-264.

    17. [17]

      DAM V, ZEVENBERGEN M, SCHAIJK R V. Sens. Actuators, B, 2016, 236:834-838.

    18. [18]

      HE W, WANG C, WANG H, JIAN M, LU W, LIANG X, ZHANG X, YANG F, ZHANG Y. Sci. Adv., 2019, 5(11):eaax0649.

    19. [19]

      SON J, BAE G Y, LEE S, LEE G, KIM S W, KIM D, CHUNG S, CHO K. Adv. Mater., 2021, 33(40):e2102740.

    20. [20]

      SAHA T, FANG J, MUKHERJEE S, DICKEY M D, VELEV O D. ACS Appl. Mater. Interfaces, 2021, 13(7):8071-8081.

    21. [21]

      KIM J, DE ARAUJO W R, SAMEK I A, BANDODKAR A J, JIA W, BRUNETTI B, PAIXÃO T R L C, WANG J. Electrochem. Commun., 2015, 51:41-45.

    22. [22]

      MNSSON I O, PIPER A, HAMEDI M M. Macromol. Biosci., 2020, 20(11):2000150.

    23. [23]

      ZHAO Z, LI Q, CHEN L, ZHAO Y, GONG J, LI Z, ZHANG J. Lab Chip, 2021, 21(5):916-932.

    24. [24]

      KOH A, KANG D, XUE Y, LEE S, PIELAK R M, KIM J, HWANG T, MIN S, BANKS A, BASTIEN P, MANCO M C, WANG L, AMMANN K R, JANG K I, WON P, HAN S, GHAFFARI R, PAIK U, SLEPIAN M J, BALOOCH G, HUANG Y G, ROGERS J A. Sci. Transl. Med., 2016, 8(366):366ra165.

    25. [25]

      YANG Y, SONG Y, BO X, MIN J, PAK O S, ZHU L, WANG M, TU J, KOGAN A, ZHANG H, HSIAI T K, LI Z P, GAO W. Nat. Biotechnol., 2020, 38(2):217-224.

    26. [26]

      ZHANG Y, CHEN Y, HUANG J, LIU Y, PENG J, CHEN S, SONG K, OUYANG X, CHENG H, WANG X. Lab Chip, 2020, 20(15):2635-2645.

    27. [27]

      SHI H, CAO Y, ZENG Y, ZHOU Y, WEN W, ZHANG C, ZHAO Y, CHEN Z. Talanta, 2022, 240:123208.

    28. [28]

      TWINE N B, NORTON R M, BROTHERS M C, HAUKE A, GOMEZ E F, HEIKENFELD J. Lab Chip, 2018, 18(18):2816-2825.

    29. [29]

    30. [30]

      YANG Y, CHUANG M, LOU S, WANG J. Analyst, 2010, 135(6):1230-1234.

    31. [31]

      GUINOVART T, BANDODKAR A J, WINDMILLER J R, ANDRADE F J, WANG J. Analyst, 2013, 138(22):7031-7038.

    32. [32]

      ZHAO Z, LI Q, DONG Y, GONG J, LI Z, ZHANG J. ACS Appl. Mater. Interfaces, 2022, 14(16):18884-18900.

    33. [33]

      YANG A, YAN F. ACS Appl. Electron. Mater., 2020, 3(1):53-67.

    34. [34]

      WANG S Q, CHINNASAMY T, LIFSON M A, INCI F, DEMIRCI U. Trends Biotechnol., 2016, 34(11):909-921.

    35. [35]

      YANG Z, XU H, HUANG Y, SUN J, WU D, GAO X, ZHANG Y. Sensors-Basel, 2019, 19(6):1403.

    36. [36]

      LAZAROVA K, BOZHILOVA S, IVANOVA S, CHRISTOVA D, BABEVA T. Sensors-Basel, 2021, 21(11):3674.

    37. [37]

      BATISTA M D R, KIM S J, DRZAL L T, HAN J W, MEYYAPPAN M. IEEE Sens. J., 2020, 20(15):8429-8436.

    38. [38]

      LÓPEZ-MUOZ G A, ESTÉVEZ M C, VÉZQUEZ-GARCÍA M, BERENGUEL-ALONSO M, ALONSO-CHAMARRO J, HOMS-CORBERA A, LECHUGA L M. J. Biophotonics, 2018, 11(8):e201800043.

    39. [39]

      WANG J, DU Y, ZHANG Q, JING Z, ZHUO K, JI J, YUAN Z, ZHANG W, SANG S. J. Sens., 2021, 2021:6634455.

    40. [40]

      ALDEA A, LEOTE R J B, MATEI E, EVANGHELIDIS A, ENCULESCU I, DICULESCU V C. Microchem. J., 2021, 165:106108.

    41. [41]

      LIU H, LI Q, ZHANG S, YIN R, LIU X, HE Y, DAI K, SHAN C, GUO J, LIU C, SHEN C, WANG X, WANG N, WANG Z, WEI R, GUO Z. J. Mater. Chem. C, 2018, 6(45):12121-12141.

    42. [42]

      PAVEL I, LAKARD S, LAKARD B. Chemosensors, 2022, 10(3):97.

    43. [43]

      HUSSAIN M, HASNAIN S, KHAN N A, BANO S, ZUHRA F, ALI M, KHAN M, ABBAS N, ALI A. Polym. Biomater., 2021, 13(18):3019.

    44. [44]

      KAZEMI F, NAGHIB S M, ZARE Y, RHEE K Y. Polym. Rev., 2020, 61(3):553-597.

    45. [45]

      MALKESHI H, MOGHADDAM H M. J. Polym. Res., 2016, 23(6):108.

    46. [46]

      ZHAO Z, JIANG J, JIANG Y, LI Y. Electroanalysis, 2021, 33(11):2345-2350.

    47. [47]

      GUALANDI I, TESSAROLO M, MARIANI F, POSSANZINI L, SCAVETTA E, FRABONI B. Polymers, 2021, 13(6):894.

    48. [48]

      XU Z, SONG J, LIU B, LV S, GAO F, LUO X, WANG P. Sens. Actuators, B, 2021, 348:130674.

    49. [49]

      XIAO J, LIU Y, SU L, ZHAO D, ZHAO L, ZHANG X. Anal. Chem., 2019, 91(23):14803-14807.

    50. [50]

      ZHAO C, LI X, WU Q, LIU X. Biosens. Bioelectron., 2021, 188:113270.

    51. [51]

      SEKAR M, PANDIARAJ M, BHANSALI S, PONPANDIAN N, VISWANATHAN C. Sci. Rep., 2019, 9:403.

    52. [52]

      TANG W, YIN L, SEMPIONATTO J R, MOON J M, TEYMOURIAN H, WANG J. Adv. Mater., 2021, 33(18):e2008465.

    53. [53]

      DEMURU S, KUNNEL B P, BRIAND D. Adv. Mater. Technol., 2020, 5(10):2000328.

    54. [54]

      QIN Y, MO J, LIU Y, ZHANG S, WANG J, FU Q, WANG S, NIE S. Adv. Funct. Mater., 2022, 32(27):2201846.

    55. [55]

      LIU M, LI Z, ZHAO X, YOUNG R J, KINLOCH I A. Nano Lett., 2020, 21(1):833-839.

    56. [56]

      CHEN J, ZHU Y, JIANG W. Compos. Sci. Technol., 2020, 186:107931-107938.

    57. [57]

      ALBERTI G, ZANONI C, MAGNAGHI L R, BIESUZ R. Chemosensors, 2021, 9(11):305.

    58. [58]

      KANG N, LIN F, ZHAO W, LOMBARDI J P, ALMIHDHAR M, LIU K, YAN S, KIM J, LUO J, HSIAO B S, POLIKS M, ZHONG C. ACS Sens., 2016, 1(8):1060-1069.

    59. [59]

      JEERAPAN I, SONSAARD T, NACAPRICHA D. Chemosensors, 2020, 8(3):71.

    60. [60]

      HUSSAIN S, PARK S. ACS Sens., 2020, 5(12):3988-3998.

    61. [61]

      REEDER J T, CHOI J, XUE Y, GUTRUF P, HANSON J, LIU M, RAY T, BANDODKAR A J, AVILA R, XIA W, KRISHNAN S, XU S, BARNES K, PAHNKE M, GHAFFARI R, HUANG Y, ROGERS J A. Sci. Adv., 2019, 5(1):eaau6356.

    62. [62]

      HUANG X, LI J, LIU Y, WONG T, SU J, YAO K, ZHOU J, HUANG Y, LI H, LI D, WU M, SONG E, HAN S, YU X. Bio-Des. Manuf., 2022, 5(1):201-209.

    63. [63]

      YANG K, ZHAO S, XU J, ZHU Z, WANG Z. Electroanalysis, 2021, 33(6):1668-1677.

    64. [64]

      GAO W, EMAMINEJAD S, NYEIN H, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVEY A. Nature, 2016, 529(7587):509-514.

    65. [65]

      KIM S B, LEE K, RAJ M S, LEE B, REEDER J T, KOO J, HOURLIER FARGETTE A, BANDODKAR A J, WON S M, SEKINE Y, CHOI J, ZHANG Y, YOON J, KIM B H, YUN Y, LEE S, SHIN J, KIM J, GHAFFARI R, ROGERS J A. Small, 2018, 14(45):1802876.

    66. [66]

      KIM J, JEERAPAN I, IMANI S, CHO T N, BANDODKAR A, CINTI S, MERCIER P P, WANG J. ACS Sens., 2016, 1(8):1011-1019.

    67. [67]

      KIM S B, KOO J, YOON J, HOURLIER-FARGETTE A, LEE B, CHEN S, JO S, CHOI J, OH Y S, LEE G, WON S M, ARANYOSI A J, LEE S P, MODEL J B, BRAUN P V, GHAFFARI R, PARK C, ROGERS J A. Lab Chip, 2019, 20(1):84-92.

    68. [68]

      SEMPIONATTO J R, KHORSHED A A, AHMED A, SILVA A N D E, BARFIDOKHT A, YIN L, GOUD K Y, MOHAMED M A, BAILEY E, MAY J, AEBISCHER C, CHATELLE C, WANG J. ACS Sens., 2020, 5(6):1804-1813.

    69. [69]

      WENG X, FU Z, ZHANG C, JIANG W, JIANG H. Anal. Chem., 2022, 94(8):3526-3534.

    70. [70]

      GANGULY A, LIN K C, MUTHUKUMAR S, PRASAD S. ACS Sens., 2021, 6(1):63-72.

    71. [71]

      KIM J, WU Y, LUAN H, YANG D S, CHO D, KWAK S S, LIU S, RYU H, GHAFFARI R, ROGERS J A. Adv. Sci., 2022, 9(2):2103331.

    72. [72]

      PUCINO V, CERTO M, BULUSU V, GOLDMANN K, PONTARINI E, HAAS R, SMITH J, HEADLAND S E, BLIGHE K, RUSCICA M, HUMBY F, LEWIS M J, KAMPHORST J J, BOMBARDIERI M, PITZALIS C, MAURO C. Cell Metab., 2019, 30(6):1055-1074.

    73. [73]

      JIANG D, XU C, ZHANG Q, YE Y, CAI Y, LI K, LI Y, HUANG X, WANG Y. Biosens. Bioelectron., 2022, 210:114303.

    74. [74]

      SHITANDA I, MITSUMOTO M, LOEW N, YOSHIHARA Y, WATANABE H, MIKAWA T, TSUJIMURA S, ITAGAKI M, MOTOSUKE M. Electrochim. Acta, 2021, 368:137620.

    75. [75]

      WANG L, XU T, FAN C, ZHANG X. iScience, 2020, 24(1):102028.

    76. [76]

      NYEIN H Y Y, BARIYA M, KIVIMAKI L, UUSITALO S, LIAW T S, JANSSON E, AHN C H, HANGASKY J A, ZHAO J Q, LIN Y J, CHAO M H, LIEDERT C, ZHAO Y B, TAI L C, HILTUNEN J, JAVEY A. Sci. Adv., 2019, 5(8):eaaw9906.

    77. [77]

      YIN S, LIU X, KAJI T, NISHINA Y, MIYAKE T. Biosens. Bioelectron., 2021, 179(7):113107.

    78. [78]

      BANDODKAR A J, YOU J, KIM N, GU Y, KUMAR R, MOHAN A M V, KURNIAWAN J, IMANI S, NAKAGAWA T, PARISH B, PARTHASARATHY M, MERCIER P P, XU S, WANG J. Energy Environ. Sci., 2017, 10(7):1581-1589.

    79. [79]

      LV J, YIN L, CHEN X, JEERAPAN I, SILVA C A, LI Y, LE M, LIN Z, WANG L, TRIFONOV A, XU S, COSNIER S, WANG J. Adv. Funct. Mater., 2021, 21(38):2102915.

    80. [80]

      ZHANG X, YANG J, BORAYEK R, QU H, NANDAKUMAR D K, ZHANG Q, DING J, TAN S C. Nano Energy, 2020, 75:104873.

    81. [81]

      WU H, XU L, WANG Y, ZHANG T, ZHANG H, BOWEN C R, WANG Z L, YANG Y. ACS Energy Lett., 2020, 5(12):3708-3717.

    82. [82]

      YU Y, NASSAR J, XU C, MIN J,YANG Y R, DAI A, DOSHI R, HUANG A, SONG Y, GEHLHAR R, AMES A D, GAO W. Sci. Robot., 2020, 5(41):eaaz7946.

    83. [83]

      GUAN H, ZHONG T, HE H, ZHAO T, XING L, ZHANG Y, XUE X. Nano Energy, 2019, 59:754-761.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    8. [8]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    9. [9]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    10. [10]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    11. [11]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    12. [12]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(14)
  • Abstract views(870)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return