Citation: YU Wen-Ze,  LI Qiu-Jin,  GONG Ji-Xian,  ZHANG Jian-Fei. Research Progress of Wearable Microfluidic Device for Sweat Sensing and Monitoring[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1723-1732. doi: 10.19756/j.issn.0253-3820.221232 shu

Research Progress of Wearable Microfluidic Device for Sweat Sensing and Monitoring

  • Corresponding author: LI Qiu-Jin, maldini@mail.nankai.edu.cn
  • Received Date: 12 May 2022
    Revised Date: 30 September 2022

    Fund Project: Supported by the National Key Research and Development Program of China (Nos.2017YFB0309800, 2016YFC0400503-02), the Nature Science Foundation of Tianjin, China (Nos.15JCYBJC18000, 18JCYBJC89600), the Xinjiang Autonomous Region Major Significant Project Foundation (No.2016A03006-3) and the Science and Technology Guidance Project of China National Textile and Apparel Council (No.2017011).

  • Flexible biosensor for real-time monitoring and tracking analysis has become an important technology for portable diagnosis platform. It has a very wide research prospect in the field of real-time portable detection. Among many flexible sensors, sweat sensor has become a research hotspot in wearable devices because of its convenient sampling and rich biological information in sweat. The analysis of biomarkers in sweat can provide important data information for individual physiological state.This paper summarizes the significance and the latest progress of wearable sweat sensor research. Based on the structure composition, microfluidic analysis device design and module integration of wearable sweat sensor, the related researches of sweat collection, sensing mechanism and signal processing system are discussed. Moreover, the applications of wearable sweat sensors in wellness monitoring, medical care, health status assessment are also investigated. In addition, the challenges and opportunities that flexible sweat sensors will face in the near future are discussed and analyzed.
  • 加载中
    1. [1]

      HEIKENFELD J. Nature, 2016, 529(7587):475-476.

    2. [2]

      SURENKOK O, KIN-ISLER A, AYTAR A, GULTEKIN Z. J. Sport Rehabil., 2008, 17(4):380-386.

    3. [3]

      IBARRA A, ASTBURY N M, OLLI K, ALHONIEMI E, TIIHONEN K. Appetite, 2015, 87:30-37.

    4. [4]

      OH T J, LIM S, KIM K M, MOON J H, CHOI S H, CHO Y M, PARK K S, JANG H, CHO N H. Clin. Endocrinol., 2017, 86(4):513-519.

    5. [5]

      KARPOVA E V, KARYAKINA E E, KARYAKIN A A. Talanta, 2020, 215:120922.

    6. [6]

      GONCALVESA C, MARSON F A L, MENDONCA R M H, BERTUZZO C S, PASCHOAL I A, RIBEIRO J D, RIBEIRO A F, LEVY C E. J. Pediatr., 2019, 95(4):443-450.

    7. [7]

      CHOI D H, THAXTON A, JEONG I C, KIM K, SOSNAY P R, CUTTING G R, SEARSON P C. J. Cystic Fibrosis, 2018, 17(4):e35-e38.

    8. [8]

      CHENG C, LI X, XU G, LU Y L, LOW S S, LIU G, ZHU L, LI C D, LIU Q J. Biosens. Bioelectron., 2021, 172(10):112782.

    9. [9]

      JIA J, XU C, PAN S, XIA S, WEI P, NOH H, ZHANG P, JIANG X. Sensors-Basel, 2018, 18(11):3775.

    10. [10]

      QIAO L, BENZIGAR M R, SUBRAMONY J A, LOVELL N H, LIU G. ACS Appl. Mater. Interfaces, 2020, 12(30):34337-34361.

    11. [11]

      BROTHERS M C, DEBROSSE M, GRIGSBY C C, NAIK R R, HUSSAIN S M, HEIKENFELD J, KIM S S. Acc. Chem. Res., 2019, 52(2):297-306.

    12. [12]

      LV J, JEERAPAN I, TEHRANI F, YIN L, SILVA-LOPEZ C A, JANG J H, JOSHUIA D, SHAH R, LIANG Y, XIE L, SOTO F, CHEN C, KARSHALEV E, KONG C, YANG Z, WANG J. Energy Environ. Sci., 2018, 11(12):3431-3442.

    13. [13]

      ARDALAN S, HOSSEINIFARD M, VOSOUGH M, GOLMOHAMMADI H. Biosens. Bioelectron., 2020, 168:112450.

    14. [14]

      COYLE S, LAU K, MOYNA N, O'GORMAN D, DIAMOND D, DI FRANCESCO F, COSTANZO D, SALVO P, TRIVELLA M G, DE ROSSI D E, TACCINI N, PARADISO R, PORCHET J, RIDOLFI A, LUPRANO J, CHUZEL C, LANIER T, REVOL-CAVALIER F, SCHOUMACKER S, MOURIER V, CHARTIER I, CONVERT R, DE-MONCUIT H, BINI C. IEEE Trans. Inf. Theory, 2010, 14(2):364-370.

    15. [15]

      SEKINE Y, KIM S B, ZHANG Y, BANDODKAR A J, XU S, CHOI J, IRIE M, RAY T R, KOHLI P, KOZAI N, SUGITA T, WU Y, LEE K, LEE K, GHAFFARI R, ROGERS J A. Lab Chip, 2018, 18(15):2178-2186.

    16. [16]

      HUESTIS M A, OYLER J M, CONE E J, WSTADIK A T, SCHOENDORFER D, JOSEPH R E. J. Chromatogr. B:Biomed. Sci. Appl., 1999, 733(1-2):247-264.

    17. [17]

      DAM V, ZEVENBERGEN M, SCHAIJK R V. Sens. Actuators, B, 2016, 236:834-838.

    18. [18]

      HE W, WANG C, WANG H, JIAN M, LU W, LIANG X, ZHANG X, YANG F, ZHANG Y. Sci. Adv., 2019, 5(11):eaax0649.

    19. [19]

      SON J, BAE G Y, LEE S, LEE G, KIM S W, KIM D, CHUNG S, CHO K. Adv. Mater., 2021, 33(40):e2102740.

    20. [20]

      SAHA T, FANG J, MUKHERJEE S, DICKEY M D, VELEV O D. ACS Appl. Mater. Interfaces, 2021, 13(7):8071-8081.

    21. [21]

      KIM J, DE ARAUJO W R, SAMEK I A, BANDODKAR A J, JIA W, BRUNETTI B, PAIXÃO T R L C, WANG J. Electrochem. Commun., 2015, 51:41-45.

    22. [22]

      MNSSON I O, PIPER A, HAMEDI M M. Macromol. Biosci., 2020, 20(11):2000150.

    23. [23]

      ZHAO Z, LI Q, CHEN L, ZHAO Y, GONG J, LI Z, ZHANG J. Lab Chip, 2021, 21(5):916-932.

    24. [24]

      KOH A, KANG D, XUE Y, LEE S, PIELAK R M, KIM J, HWANG T, MIN S, BANKS A, BASTIEN P, MANCO M C, WANG L, AMMANN K R, JANG K I, WON P, HAN S, GHAFFARI R, PAIK U, SLEPIAN M J, BALOOCH G, HUANG Y G, ROGERS J A. Sci. Transl. Med., 2016, 8(366):366ra165.

    25. [25]

      YANG Y, SONG Y, BO X, MIN J, PAK O S, ZHU L, WANG M, TU J, KOGAN A, ZHANG H, HSIAI T K, LI Z P, GAO W. Nat. Biotechnol., 2020, 38(2):217-224.

    26. [26]

      ZHANG Y, CHEN Y, HUANG J, LIU Y, PENG J, CHEN S, SONG K, OUYANG X, CHENG H, WANG X. Lab Chip, 2020, 20(15):2635-2645.

    27. [27]

      SHI H, CAO Y, ZENG Y, ZHOU Y, WEN W, ZHANG C, ZHAO Y, CHEN Z. Talanta, 2022, 240:123208.

    28. [28]

      TWINE N B, NORTON R M, BROTHERS M C, HAUKE A, GOMEZ E F, HEIKENFELD J. Lab Chip, 2018, 18(18):2816-2825.

    29. [29]

    30. [30]

      YANG Y, CHUANG M, LOU S, WANG J. Analyst, 2010, 135(6):1230-1234.

    31. [31]

      GUINOVART T, BANDODKAR A J, WINDMILLER J R, ANDRADE F J, WANG J. Analyst, 2013, 138(22):7031-7038.

    32. [32]

      ZHAO Z, LI Q, DONG Y, GONG J, LI Z, ZHANG J. ACS Appl. Mater. Interfaces, 2022, 14(16):18884-18900.

    33. [33]

      YANG A, YAN F. ACS Appl. Electron. Mater., 2020, 3(1):53-67.

    34. [34]

      WANG S Q, CHINNASAMY T, LIFSON M A, INCI F, DEMIRCI U. Trends Biotechnol., 2016, 34(11):909-921.

    35. [35]

      YANG Z, XU H, HUANG Y, SUN J, WU D, GAO X, ZHANG Y. Sensors-Basel, 2019, 19(6):1403.

    36. [36]

      LAZAROVA K, BOZHILOVA S, IVANOVA S, CHRISTOVA D, BABEVA T. Sensors-Basel, 2021, 21(11):3674.

    37. [37]

      BATISTA M D R, KIM S J, DRZAL L T, HAN J W, MEYYAPPAN M. IEEE Sens. J., 2020, 20(15):8429-8436.

    38. [38]

      LÓPEZ-MUOZ G A, ESTÉVEZ M C, VÉZQUEZ-GARCÍA M, BERENGUEL-ALONSO M, ALONSO-CHAMARRO J, HOMS-CORBERA A, LECHUGA L M. J. Biophotonics, 2018, 11(8):e201800043.

    39. [39]

      WANG J, DU Y, ZHANG Q, JING Z, ZHUO K, JI J, YUAN Z, ZHANG W, SANG S. J. Sens., 2021, 2021:6634455.

    40. [40]

      ALDEA A, LEOTE R J B, MATEI E, EVANGHELIDIS A, ENCULESCU I, DICULESCU V C. Microchem. J., 2021, 165:106108.

    41. [41]

      LIU H, LI Q, ZHANG S, YIN R, LIU X, HE Y, DAI K, SHAN C, GUO J, LIU C, SHEN C, WANG X, WANG N, WANG Z, WEI R, GUO Z. J. Mater. Chem. C, 2018, 6(45):12121-12141.

    42. [42]

      PAVEL I, LAKARD S, LAKARD B. Chemosensors, 2022, 10(3):97.

    43. [43]

      HUSSAIN M, HASNAIN S, KHAN N A, BANO S, ZUHRA F, ALI M, KHAN M, ABBAS N, ALI A. Polym. Biomater., 2021, 13(18):3019.

    44. [44]

      KAZEMI F, NAGHIB S M, ZARE Y, RHEE K Y. Polym. Rev., 2020, 61(3):553-597.

    45. [45]

      MALKESHI H, MOGHADDAM H M. J. Polym. Res., 2016, 23(6):108.

    46. [46]

      ZHAO Z, JIANG J, JIANG Y, LI Y. Electroanalysis, 2021, 33(11):2345-2350.

    47. [47]

      GUALANDI I, TESSAROLO M, MARIANI F, POSSANZINI L, SCAVETTA E, FRABONI B. Polymers, 2021, 13(6):894.

    48. [48]

      XU Z, SONG J, LIU B, LV S, GAO F, LUO X, WANG P. Sens. Actuators, B, 2021, 348:130674.

    49. [49]

      XIAO J, LIU Y, SU L, ZHAO D, ZHAO L, ZHANG X. Anal. Chem., 2019, 91(23):14803-14807.

    50. [50]

      ZHAO C, LI X, WU Q, LIU X. Biosens. Bioelectron., 2021, 188:113270.

    51. [51]

      SEKAR M, PANDIARAJ M, BHANSALI S, PONPANDIAN N, VISWANATHAN C. Sci. Rep., 2019, 9:403.

    52. [52]

      TANG W, YIN L, SEMPIONATTO J R, MOON J M, TEYMOURIAN H, WANG J. Adv. Mater., 2021, 33(18):e2008465.

    53. [53]

      DEMURU S, KUNNEL B P, BRIAND D. Adv. Mater. Technol., 2020, 5(10):2000328.

    54. [54]

      QIN Y, MO J, LIU Y, ZHANG S, WANG J, FU Q, WANG S, NIE S. Adv. Funct. Mater., 2022, 32(27):2201846.

    55. [55]

      LIU M, LI Z, ZHAO X, YOUNG R J, KINLOCH I A. Nano Lett., 2020, 21(1):833-839.

    56. [56]

      CHEN J, ZHU Y, JIANG W. Compos. Sci. Technol., 2020, 186:107931-107938.

    57. [57]

      ALBERTI G, ZANONI C, MAGNAGHI L R, BIESUZ R. Chemosensors, 2021, 9(11):305.

    58. [58]

      KANG N, LIN F, ZHAO W, LOMBARDI J P, ALMIHDHAR M, LIU K, YAN S, KIM J, LUO J, HSIAO B S, POLIKS M, ZHONG C. ACS Sens., 2016, 1(8):1060-1069.

    59. [59]

      JEERAPAN I, SONSAARD T, NACAPRICHA D. Chemosensors, 2020, 8(3):71.

    60. [60]

      HUSSAIN S, PARK S. ACS Sens., 2020, 5(12):3988-3998.

    61. [61]

      REEDER J T, CHOI J, XUE Y, GUTRUF P, HANSON J, LIU M, RAY T, BANDODKAR A J, AVILA R, XIA W, KRISHNAN S, XU S, BARNES K, PAHNKE M, GHAFFARI R, HUANG Y, ROGERS J A. Sci. Adv., 2019, 5(1):eaau6356.

    62. [62]

      HUANG X, LI J, LIU Y, WONG T, SU J, YAO K, ZHOU J, HUANG Y, LI H, LI D, WU M, SONG E, HAN S, YU X. Bio-Des. Manuf., 2022, 5(1):201-209.

    63. [63]

      YANG K, ZHAO S, XU J, ZHU Z, WANG Z. Electroanalysis, 2021, 33(6):1668-1677.

    64. [64]

      GAO W, EMAMINEJAD S, NYEIN H, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVEY A. Nature, 2016, 529(7587):509-514.

    65. [65]

      KIM S B, LEE K, RAJ M S, LEE B, REEDER J T, KOO J, HOURLIER FARGETTE A, BANDODKAR A J, WON S M, SEKINE Y, CHOI J, ZHANG Y, YOON J, KIM B H, YUN Y, LEE S, SHIN J, KIM J, GHAFFARI R, ROGERS J A. Small, 2018, 14(45):1802876.

    66. [66]

      KIM J, JEERAPAN I, IMANI S, CHO T N, BANDODKAR A, CINTI S, MERCIER P P, WANG J. ACS Sens., 2016, 1(8):1011-1019.

    67. [67]

      KIM S B, KOO J, YOON J, HOURLIER-FARGETTE A, LEE B, CHEN S, JO S, CHOI J, OH Y S, LEE G, WON S M, ARANYOSI A J, LEE S P, MODEL J B, BRAUN P V, GHAFFARI R, PARK C, ROGERS J A. Lab Chip, 2019, 20(1):84-92.

    68. [68]

      SEMPIONATTO J R, KHORSHED A A, AHMED A, SILVA A N D E, BARFIDOKHT A, YIN L, GOUD K Y, MOHAMED M A, BAILEY E, MAY J, AEBISCHER C, CHATELLE C, WANG J. ACS Sens., 2020, 5(6):1804-1813.

    69. [69]

      WENG X, FU Z, ZHANG C, JIANG W, JIANG H. Anal. Chem., 2022, 94(8):3526-3534.

    70. [70]

      GANGULY A, LIN K C, MUTHUKUMAR S, PRASAD S. ACS Sens., 2021, 6(1):63-72.

    71. [71]

      KIM J, WU Y, LUAN H, YANG D S, CHO D, KWAK S S, LIU S, RYU H, GHAFFARI R, ROGERS J A. Adv. Sci., 2022, 9(2):2103331.

    72. [72]

      PUCINO V, CERTO M, BULUSU V, GOLDMANN K, PONTARINI E, HAAS R, SMITH J, HEADLAND S E, BLIGHE K, RUSCICA M, HUMBY F, LEWIS M J, KAMPHORST J J, BOMBARDIERI M, PITZALIS C, MAURO C. Cell Metab., 2019, 30(6):1055-1074.

    73. [73]

      JIANG D, XU C, ZHANG Q, YE Y, CAI Y, LI K, LI Y, HUANG X, WANG Y. Biosens. Bioelectron., 2022, 210:114303.

    74. [74]

      SHITANDA I, MITSUMOTO M, LOEW N, YOSHIHARA Y, WATANABE H, MIKAWA T, TSUJIMURA S, ITAGAKI M, MOTOSUKE M. Electrochim. Acta, 2021, 368:137620.

    75. [75]

      WANG L, XU T, FAN C, ZHANG X. iScience, 2020, 24(1):102028.

    76. [76]

      NYEIN H Y Y, BARIYA M, KIVIMAKI L, UUSITALO S, LIAW T S, JANSSON E, AHN C H, HANGASKY J A, ZHAO J Q, LIN Y J, CHAO M H, LIEDERT C, ZHAO Y B, TAI L C, HILTUNEN J, JAVEY A. Sci. Adv., 2019, 5(8):eaaw9906.

    77. [77]

      YIN S, LIU X, KAJI T, NISHINA Y, MIYAKE T. Biosens. Bioelectron., 2021, 179(7):113107.

    78. [78]

      BANDODKAR A J, YOU J, KIM N, GU Y, KUMAR R, MOHAN A M V, KURNIAWAN J, IMANI S, NAKAGAWA T, PARISH B, PARTHASARATHY M, MERCIER P P, XU S, WANG J. Energy Environ. Sci., 2017, 10(7):1581-1589.

    79. [79]

      LV J, YIN L, CHEN X, JEERAPAN I, SILVA C A, LI Y, LE M, LIN Z, WANG L, TRIFONOV A, XU S, COSNIER S, WANG J. Adv. Funct. Mater., 2021, 21(38):2102915.

    80. [80]

      ZHANG X, YANG J, BORAYEK R, QU H, NANDAKUMAR D K, ZHANG Q, DING J, TAN S C. Nano Energy, 2020, 75:104873.

    81. [81]

      WU H, XU L, WANG Y, ZHANG T, ZHANG H, BOWEN C R, WANG Z L, YANG Y. ACS Energy Lett., 2020, 5(12):3708-3717.

    82. [82]

      YU Y, NASSAR J, XU C, MIN J,YANG Y R, DAI A, DOSHI R, HUANG A, SONG Y, GEHLHAR R, AMES A D, GAO W. Sci. Robot., 2020, 5(41):eaaz7946.

    83. [83]

      GUAN H, ZHONG T, HE H, ZHAO T, XING L, ZHANG Y, XUE X. Nano Energy, 2019, 59:754-761.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    6. [6]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    13. [13]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    14. [14]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    17. [17]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-0. doi: 10.3866/PKU.WHXB202309045

    18. [18]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(15)
  • Abstract views(1359)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return