Citation:
LI Han-Wei, JIANG Ji-Chun, YANG Ming, FAN Zhi-Gang, ZHANG Bai-Mao, TIAN Di, HUA Lei, LI Hai-Yang. Development of Ion Funnel Focusing Photoionization Mass Spectrometry and Its Application in Online Monitoring of Atmospheric Benzene Series[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(10): 1456-1464.
doi:
10.19756/j.issn.0253-3820.221209
-
Atmospheric benzene series have high photochemical reactivity and biological toxicity, and have been one of the most important atmospheric volatile organic pollutants. However, their low concentration and rapid temporal and spatial changes make real-time and accurate quantitative monitoring extremely challenging. Vacuum ultraviolet photoionization (VUV-PI) mass spectrometry is a commonly used analytical method for online monitoring of benzene series, but the currently commonly used VUV-PI ionization source cannot effectively utilize the generated ions, which restricts the further improvement of sensitivity. In this study, a novel ion funnel focused photoionization time-of-flight mass spectrometer (IFPI-TOFMS) was developed. By introducing a radio frequency ion funnel into the photoionization source, the ion transmission efficiency in the source was increased by 26-37 times, and the limits of detection (LODs) of IFPI-TOFMS for isoprene, benzene, toluene, styrene, p-xylene, trimethylbenzene, and limonene reached 34.3×10-12, 7.9×10-12, 7.0×10-12, 9.4×10-12, 7.7×10-12, 10.6×10-12 and 13.7×10-12(V/V) within 5 s, respectively. Linear range of 2-3 orders of magnitude were achieved with the linear correlation coefficients (R2) greater than 0.99. The relative standard deviation (RSD) during 12 h monitoring was less than 3%, which exhibited good stability of IFPI-TOFMS. IFPI-TOFMS was utilized to carry out real-time online monitoring of atmospheric benzene series in Dalian urban area. The results showed that benzene series in the atmosphere down to 10-12 (V/V) could be quantitatively monitored in real-time and online by IFPI-TOFMS, which indicated that IFPI-TOFMS had potential application value and broad development prospects in the field of atmospheric environment monitoring.
-
-
-
[1]
-
[2]
-
[3]
FANG W Z, GONG L, ZHANG Q, CAO M Q, LI Y Q, SHENG L S. Environ. Sci. Technol., 2012, 46(7):3898-3904.
-
[4]
FANG W Z, GONG L, SHENG L S. Environ. Chem., 2017, 14(2):75-90.
-
[5]
FANG W Z, GONG L, SHAN X B, LIU F Y, WANG Z Y, SHENG L S. Anal. Chem., 2011, 83(23):9024-9032.
-
[6]
Murphy, Norma T. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:Compendium Method TO-14, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1999.
-
[7]
Murphy, Norma T. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:Compendium Method TO-15, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1999.
-
[8]
-
[9]
-
[10]
HEWITT C N, HAYWARD S, TANI A. J. Environ. Monit., 2003, 5(1):1-7.
-
[11]
YUAN B, KOSS A R, WARNEKE C, COGGON M, SEKIMOTO K, DE GOUW J A. Chem. Rev., 2017, 117(21):13187-13229.
-
[12]
SOVOVA K, SPESYVYI A, BURSOVA M, PASZTOR P, KUBISTA J, SHESTIVSKA V, SPANEL P. Anal. Bioanal. Chem., 2019, 411(14):2997-3007.
-
[13]
SPANEL P, PAVLIK M, SMITH D. Int. J. Mass Spectrom., 1995, 145(3):177-186.
-
[14]
-
[15]
-
[16]
WEN W, YU S S, ZHOU C Q, MA H, ZHOU Z Y, CAO C C, YANG J Z, XU M G, QI F, ZHANG G B, PAN Y. Angew. Chem., Int. Ed., 2020, 59(12):4873-4878.
-
[17]
XIE Y Y, HUA L, HOU K Y, CHEN P, ZHAO W D, CHEN W D, JU B Y, LI H Y. Anal. Chem., 2014, 86(15):7681-7687.
-
[18]
CUI X J, LI H B, WANG Y, HU Y L, HUA L, LI H Y, HAN X W, LIU Q F, YANG F, HE L M, CHEN X Q, LI Q Y, XIAO J P, DENG D H, BAO X H. Chem, 2018, 4(8):1902-1910.
-
[19]
WAN N B, JIANG J C, HU F, CHEN P, ZHU K X, DENG D H, XIE Y Y, WU C X, HUA L, LI H Y. Anal. Chem., 2021, 93(4):2207-2214.
-
[20]
LI Q Y, HUA L, XIE Y Y, JIANG J C, LI H W, HOU K Y, TIAN D, LI H Y. Analyst, 2019, 144(4):1104-1109.
-
[21]
HOU K Y, WANG J D, LI H Y. Rapid Commun. Mass Spectrom., 2007, 21(22):3554-3560.
-
[22]
LI H W, JIANG J C, HUA L, CHEN P, XIE Y Y, FAN Z G, TIAN D, LI H Y. Talanta, 2021, 235:122722.
-
[23]
WU C X, WEN Y X, HUA L, JIANG J C, XIE Y Y, CAO Y X, CHAI S, HOU K Y, LI H Y. Anal. Chim. Acta, 2020, 1137:56-63.
-
[24]
SUN W Q, LIANG M, LI Z, SHU J N, YANG B, XU C, ZOU Y. Talanta, 2016, 156-157:191-195.
-
[25]
WANG S, WANG W M, LI H, XING Y M, HOU K Y, LI H Y. Anal. Chem., 2019, 91(6):3845-3851.
-
[26]
WANG W M, WANG S, XU C T, LI H, XING Y M, HOU K Y, LI H Y. Anal. Chem., 2019, 91(15):10212-10220.
-
[27]
WANG Y, HUA L, LI Q Y, JIANG J C, HOU K Y, WU C X, LI H Y. Anal. Chem., 2018, 90(8):5398-5404.
-
[28]
WANG Y, JIANG J C, HUA L, HOU K Y, XIE Y Y, CHEN P, LIU W, LI Q Y, WANG S, LI H Y. Anal. Chem., 2016, 88(18):9047-9055.
-
[29]
DORFNER R, FERGE T, YERETZIAN C, KETTRUP A, ZIMMERMANN R. Anal. Chem., 2004, 76(5):1386-1402.
-
[30]
-
[31]
WAN N B, JIANG J C, WANG H D, CHEN P, FAN H J, WANG W G, HUA L, LI H Y. Anal. Chim. Acta, 2022, 1206:339612.
-
[32]
HUA L, WU Q H, HOU K Y, CUI H P, CHEN P, WANG W G, LI J H, LI H Y. Anal. Chem., 2011, 83(13):5309-5316.
-
[33]
SUN W Q, SHU J N, ZHANG P, LI Z, LI N N, LIANG M, YANG B. Atmos. Meas. Tech., 2015, 8(11):4637-4643.
-
[34]
JIANG J C, WANG Y, HOU K Y, HUA L, CHEN P, LIU W, XIE Y Y, LI H Y. Anal. Chem., 2016, 88(10):5028-5032.
-
[35]
EGOROVA T, DIETIKER R, HATTENDORF B, GUNTHER D. Spectrochim. Acta, Part B, 2012, 76:40-47.
-
[36]
YU L, TANG S W, ZHANG J L, ZHU Q, YU J C, TANG K Q. Int. J. Mass Spectrom., 2019, 436:79-82.
-
[1]
-
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[3]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[4]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[5]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[6]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[7]
Xiangyu CHEN , Zhenzhen MIAO , Ligang XU , Guangbao WU , Zhuang LIU , Wenzhen LÜ , Runfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056
-
[8]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[9]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[10]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[11]
Rongzhan LOU , Qiaoling KANG , Zhenchao BAI , Dongyun LI , Yang XU , Rui WANG , Qingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142
-
[12]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[13]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[14]
Chunyuan Kang , Xiaoyu Li , Fan Yang , Bai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156
-
[15]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[16]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[17]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[18]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[19]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[20]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[1]
Metrics
- PDF Downloads(12)
- Abstract views(779)
- HTML views(121)
Login In
DownLoad: