Citation: LI Han-Wei,  JIANG Ji-Chun,  YANG Ming,  FAN Zhi-Gang,  ZHANG Bai-Mao,  TIAN Di,  HUA Lei,  LI Hai-Yang. Development of Ion Funnel Focusing Photoionization Mass Spectrometry and Its Application in Online Monitoring of Atmospheric Benzene Series[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1456-1464. doi: 10.19756/j.issn.0253-3820.221209 shu

Development of Ion Funnel Focusing Photoionization Mass Spectrometry and Its Application in Online Monitoring of Atmospheric Benzene Series

  • Corresponding author: JIANG Ji-Chun,  TIAN Di, 
  • Received Date: 29 April 2022
    Revised Date: 26 May 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22027804, 22174142) and Innovative Funds from Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Nos.DICP I202144, DICP I202123).

  • Atmospheric benzene series have high photochemical reactivity and biological toxicity, and have been one of the most important atmospheric volatile organic pollutants. However, their low concentration and rapid temporal and spatial changes make real-time and accurate quantitative monitoring extremely challenging. Vacuum ultraviolet photoionization (VUV-PI) mass spectrometry is a commonly used analytical method for online monitoring of benzene series, but the currently commonly used VUV-PI ionization source cannot effectively utilize the generated ions, which restricts the further improvement of sensitivity. In this study, a novel ion funnel focused photoionization time-of-flight mass spectrometer (IFPI-TOFMS) was developed. By introducing a radio frequency ion funnel into the photoionization source, the ion transmission efficiency in the source was increased by 26-37 times, and the limits of detection (LODs) of IFPI-TOFMS for isoprene, benzene, toluene, styrene, p-xylene, trimethylbenzene, and limonene reached 34.3×10-12, 7.9×10-12, 7.0×10-12, 9.4×10-12, 7.7×10-12, 10.6×10-12 and 13.7×10-12(V/V) within 5 s, respectively. Linear range of 2-3 orders of magnitude were achieved with the linear correlation coefficients (R2) greater than 0.99. The relative standard deviation (RSD) during 12 h monitoring was less than 3%, which exhibited good stability of IFPI-TOFMS. IFPI-TOFMS was utilized to carry out real-time online monitoring of atmospheric benzene series in Dalian urban area. The results showed that benzene series in the atmosphere down to 10-12 (V/V) could be quantitatively monitored in real-time and online by IFPI-TOFMS, which indicated that IFPI-TOFMS had potential application value and broad development prospects in the field of atmospheric environment monitoring.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      FANG W Z, GONG L, ZHANG Q, CAO M Q, LI Y Q, SHENG L S. Environ. Sci. Technol., 2012, 46(7):3898-3904.

    4. [4]

      FANG W Z, GONG L, SHENG L S. Environ. Chem., 2017, 14(2):75-90.

    5. [5]

      FANG W Z, GONG L, SHAN X B, LIU F Y, WANG Z Y, SHENG L S. Anal. Chem., 2011, 83(23):9024-9032.

    6. [6]

      Murphy, Norma T. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:Compendium Method TO-14, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1999.

    7. [7]

      Murphy, Norma T. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:Compendium Method TO-15, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1999.

    8. [8]

    9. [9]

    10. [10]

      HEWITT C N, HAYWARD S, TANI A. J. Environ. Monit., 2003, 5(1):1-7.

    11. [11]

      YUAN B, KOSS A R, WARNEKE C, COGGON M, SEKIMOTO K, DE GOUW J A. Chem. Rev., 2017, 117(21):13187-13229.

    12. [12]

      SOVOVA K, SPESYVYI A, BURSOVA M, PASZTOR P, KUBISTA J, SHESTIVSKA V, SPANEL P. Anal. Bioanal. Chem., 2019, 411(14):2997-3007.

    13. [13]

      SPANEL P, PAVLIK M, SMITH D. Int. J. Mass Spectrom., 1995, 145(3):177-186.

    14. [14]

    15. [15]

    16. [16]

      WEN W, YU S S, ZHOU C Q, MA H, ZHOU Z Y, CAO C C, YANG J Z, XU M G, QI F, ZHANG G B, PAN Y. Angew. Chem., Int. Ed., 2020, 59(12):4873-4878.

    17. [17]

      XIE Y Y, HUA L, HOU K Y, CHEN P, ZHAO W D, CHEN W D, JU B Y, LI H Y. Anal. Chem., 2014, 86(15):7681-7687.

    18. [18]

      CUI X J, LI H B, WANG Y, HU Y L, HUA L, LI H Y, HAN X W, LIU Q F, YANG F, HE L M, CHEN X Q, LI Q Y, XIAO J P, DENG D H, BAO X H. Chem, 2018, 4(8):1902-1910.

    19. [19]

      WAN N B, JIANG J C, HU F, CHEN P, ZHU K X, DENG D H, XIE Y Y, WU C X, HUA L, LI H Y. Anal. Chem., 2021, 93(4):2207-2214.

    20. [20]

      LI Q Y, HUA L, XIE Y Y, JIANG J C, LI H W, HOU K Y, TIAN D, LI H Y. Analyst, 2019, 144(4):1104-1109.

    21. [21]

      HOU K Y, WANG J D, LI H Y. Rapid Commun. Mass Spectrom., 2007, 21(22):3554-3560.

    22. [22]

      LI H W, JIANG J C, HUA L, CHEN P, XIE Y Y, FAN Z G, TIAN D, LI H Y. Talanta, 2021, 235:122722.

    23. [23]

      WU C X, WEN Y X, HUA L, JIANG J C, XIE Y Y, CAO Y X, CHAI S, HOU K Y, LI H Y. Anal. Chim. Acta, 2020, 1137:56-63.

    24. [24]

      SUN W Q, LIANG M, LI Z, SHU J N, YANG B, XU C, ZOU Y. Talanta, 2016, 156-157:191-195.

    25. [25]

      WANG S, WANG W M, LI H, XING Y M, HOU K Y, LI H Y. Anal. Chem., 2019, 91(6):3845-3851.

    26. [26]

      WANG W M, WANG S, XU C T, LI H, XING Y M, HOU K Y, LI H Y. Anal. Chem., 2019, 91(15):10212-10220.

    27. [27]

      WANG Y, HUA L, LI Q Y, JIANG J C, HOU K Y, WU C X, LI H Y. Anal. Chem., 2018, 90(8):5398-5404.

    28. [28]

      WANG Y, JIANG J C, HUA L, HOU K Y, XIE Y Y, CHEN P, LIU W, LI Q Y, WANG S, LI H Y. Anal. Chem., 2016, 88(18):9047-9055.

    29. [29]

      DORFNER R, FERGE T, YERETZIAN C, KETTRUP A, ZIMMERMANN R. Anal. Chem., 2004, 76(5):1386-1402.

    30. [30]

    31. [31]

      WAN N B, JIANG J C, WANG H D, CHEN P, FAN H J, WANG W G, HUA L, LI H Y. Anal. Chim. Acta, 2022, 1206:339612.

    32. [32]

      HUA L, WU Q H, HOU K Y, CUI H P, CHEN P, WANG W G, LI J H, LI H Y. Anal. Chem., 2011, 83(13):5309-5316.

    33. [33]

      SUN W Q, SHU J N, ZHANG P, LI Z, LI N N, LIANG M, YANG B. Atmos. Meas. Tech., 2015, 8(11):4637-4643.

    34. [34]

      JIANG J C, WANG Y, HOU K Y, HUA L, CHEN P, LIU W, XIE Y Y, LI H Y. Anal. Chem., 2016, 88(10):5028-5032.

    35. [35]

      EGOROVA T, DIETIKER R, HATTENDORF B, GUNTHER D. Spectrochim. Acta, Part B, 2012, 76:40-47.

    36. [36]

      YU L, TANG S W, ZHANG J L, ZHU Q, YU J C, TANG K Q. Int. J. Mass Spectrom., 2019, 436:79-82.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    6. [6]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(12)
  • Abstract views(779)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return