Citation: XIAO Shu-Fen,  FANG Zheng,  WANG Xu-Jun,  YANG Tian-Hui,  QING Tai-Ping. Aptamer-Mediated Fluorescent Copper Nanoclusters for Label-free and Rapid Detection of Isocarbophos[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 364-372. doi: 10.19756/j.issn.0253-3820.221207 shu

Aptamer-Mediated Fluorescent Copper Nanoclusters for Label-free and Rapid Detection of Isocarbophos

  • Corresponding author: QING Tai-Ping, taiping_qing@163.com
  • Received Date: 27 April 2022
    Revised Date: 25 December 2022

    Fund Project: Supported by the Hunan Provincial Natural Science Foundation of China (No. 2022JJ30559), the Opening Foundation of State Key Laboratory of Chemo/Biosensing and Chemometrics (No. 2019008) and the Student’s Platform for Innovation and Entrepreneurship Training Program.

  • Based on the target recognition ability of aptamer and the excellent fluorescence performance of copper nanoclusters (CuNCs), a label-free fluorescent probe was developed for rapid detection of isocarbophos (ISO). In the absence of target molecule, the aptamer DNA and complementary DNA in the solution formed double-stranded DNA, which could mediate the synthesis of fluorescent CuNCs and showed a high fluorescence signal. When ISO was present, it would form aptamer-target complex, and released the complementary DNA. Free single stranded DNA could not mediate the synthesis of CuNCs, resulting in weak fluorescence signal in solution. Under the optimal conditions, the fluorescence inhibition rate of the system showed a linear relationship with the logarithm of concentration of ISO within the concentration range of 0.05-25 mg/L, and the detection limit was 47 μg/L (3σ). The method showed a high selectivity in detection of ISO with little interference. In addition, the probe was successfully used for detection of ISO in water samples with the recoveries of 80.3%-108.0%. These results indicated that the developed method could be used to effectively detect ISO residues in actual samples.
  • 加载中
    1. [1]

      WU L, CHANG H, MA X. Sci. Total Environ., 2017, 609:385-395.

    2. [2]

      EDDLESTON M. Annu. Rev. Pharmacol. Toxicol., 201959(1):341-360.

    3. [3]

      KAMEL A, BYRNE C, VIGO C, FERRARIO J, STAFFORD C, VERDIN G, SIEGELMAN F, KNIZNER S, HETRICK J. Water Res., 2008, 43(2):522-534.

    4. [4]

      EDDLESTON M, WOREK F, EYER P, THIERMANN H, VON MEYER L, JEGANATHAN K, SHERIFF M H R, DAWSON A H, BUCKLEY N A. QJM, 2009, 102(11):785-792.

    5. [5]

      TANKIEWICZ M, FENIK J, BIZIUK M. TrAC, Trends Anal. Chem., 2010, 29(9):1050-1063.

    6. [6]

      ARAGAY G, PINO F, MERKOÇI A. Chem. Rev., 2012, 112(10):5317-5338.

    7. [7]

      SHARMA D, NAGPAL A, PAKADE Y B, KATNORIA J K. Talanta, 2010, 82(4):1077-1089.

    8. [8]

      TAO C J, HU J Y, LI J Z, ZHENG S S, LIU W, LI C J. Bull. Environ. Contam. Toxicol., 2009, 82(1):111-115.

    9. [9]

      MARTıNEZ VIDAL J L, ARREBOLA F J, MATEU-SÁNCHEZ M. J. Chromatogr. A, 2002, 959(1-2):203-213.

    10. [10]

      ZHANG W, ASIRI A M, LIU D, DU D, LIN Y. TrAC, Trends Anal. Chem., 2014, 54:1-10.

    11. [11]

      HONDRED J A, BREGER J C, ALVES N J, TRAMMELL S A, WALPER S A, MEDINTZ I L, CLAUSSEN J C. ACS Appl. Mater. Interfaces, 2018, 10(13):11125-11134.

    12. [12]

      WANG L, SHI F, LI Y, SU X. Sens. Actuators, B, 2016, 222:945-951.

    13. [13]

      ZHAO H, JI X, WANG B, WANG N, LI X, NI R, REN J. Biosens. Bioelectron., 2015, 65:23-30.

    14. [14]

      SHABAN S M, KIM D H. Sensors, 2021, 21(3):979.

    15. [15]

    16. [16]

      ABNOUS K, DANESH N M, NAMEGHI M A, RAMEZANI M, ALIBOLANDI M, LAVAEE P, TAGHDISI S M. Biosens. Bioelectron., 2019, 144:111674.

    17. [17]

      LUO Y, YU H, ALKHAMIS O, LIU Y, LOU X, YU B, XIAO Y. Anal. Chem., 2019, 91(11):7199-7207.

    18. [18]

    19. [19]

      WANG R H, ZHU C L, WANG L L, XU L Z, WANG W L, YANG C, ZHANG Y. Talanta, 2019, 205:120094.

    20. [20]

      LIN B, YU Y, LI R, CAO Y, GUO M. Sens. Actuators, B, 2016, 229:100-109.

    21. [21]

    22. [22]

      HU X, LIU T, ZHUANG Y, WANG W, LI Y, FAN W, HUANG Y. TrAC, Trends Anal. Chem., 2016, 77:66-75.

    23. [23]

      LI H, LU Y, PANG J, SUN J, YANG F, WANG Z, LIU Y. Microchim. Acta, 2019, 186(12):862.

    24. [24]

      CHEN J, LIU J, FANG Z, ZENG L. Chem. Commun., 2012, 48(7):1057-1059.

    25. [25]

      ZHANG Z, LIU T, YUE C, WANG S, MA J, ZHOU T, WANG F, WANG X, ZHANG G. Colloids Surf., A, 2019, 579:123656.

    26. [26]

      HU R, LIU Y R, KONG R M, DONOVAN M J, ZHANG X B, TAN W, SHEN G L, YU R Q. Biosens. Bioelectron., 2013, 42:31-35.

    27. [27]

      QING T, LONG C, WANG X, ZHANG K, ZHANG P, FENG B. Microchim. Acta, 2019, 186(4):248.

    28. [28]

      WANG L, LIU X, ZHANG Q, ZHANG C, LIU Y, TU K, TU J. Biotechnol. Lett., 2012, 34(5):869-874.

    29. [29]

      QING T, QING Z, MAO Z, HE X, XU F, WEN L, HE D, SHI H, WANG K. RSC Adv., 2014, 4(105):61092-61095.

    30. [30]

      QING Z, HE X, HE D, WANG K, XU F, QING T, YANG X. Angew. Chem. Int. Ed., 2013, 52(37):9719-9722.

    31. [31]

    32. [32]

      LIU B, TANG Y, YANG Y, WU Y. Food Control, 2021, 129:108208.

    33. [33]

    34. [34]

      LIU D L, LI Y, SUN R, XU J Y, CHEN Y, SUN C Y. J. Nanosci. Nanotechnol., 2020, 20(4):2114-2121.

    35. [35]

      CHEN H, WU Y, YANG W, ZHAN S, QIU S, ZHOU P. Sens. Actuators, B, 2017, 243:445-453.

    36. [36]

      FAN K, YANG R, ZHAO Y, ZANG C, MIAO X, QU B, LU L. Sens. Actuators, B, 2020, 321:128515.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    9. [9]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    14. [14]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(13)
  • Abstract views(1055)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return