Citation: XIE Kai-Xin,  LIU Chang,  LI Meng-Fan,  LI Zhuan,  XIAO Xiu-Xian. Enhancement Effect of Gold Nanorods on Surface Plasmon Coupled Emission[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1560-1566. doi: 10.19756/j.issn.0253-3820.221176 shu

Enhancement Effect of Gold Nanorods on Surface Plasmon Coupled Emission

  • Corresponding author: XIE Kai-Xin, xiekaixin@tynu.edu.cn
  • Received Date: 10 April 2022
    Revised Date: 10 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21804098), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (No.2021L402) and the Key Laboratory of Spectrochemical Analysis and Instrumentation (Xiamen University), Ministry of Education (No.SCAI2003).

  • Surface plasmon coupled emission (SPCE), a novel surface enhanced fluorescence technique, can generate directional and amplified radiation by the intense interaction between fluorophores and surface plasmon of metallic nanofilm. Strong interaction between localized and propagating surface plasmon and "hot spot" structure is important to enhance electromagnetic field while providing special optical phenomena. This unique plasmonic effect has the potential to optimize the performance of SPCE based system. Herein, gold nanorods (AuNRs) were introduced through electrostatic adsorption to achieve an enhanced fluorescence system. After introduction of AuNRs, the fluorescence signal enhancement was realized by factors over 40 and 150 compared with the normal SPCE and free space emission, respectively. The unique enhancement of SPCE by the AuNRs effectively overcame the signal quenching and this enhancement was proven to be triggered by the enhanced electromagnetic field induced by the AuNRs assembly, which provided an opportunity to increase the detection sensitivity and established an optimal plasmonic enhancement system. The amplified SPCE system was employed for multi-wavelength detection through different emission angles, which could broaden the application of SPCE in multi-wavelength simultaneous enhancement and detection.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      FORT E, GRESILLON S. J. Phys. D:Appl. Phys., 2008, 41(1):013001.

    5. [5]

      LAKOWICZ J R. Anal. Biochem., 2004, 324:153-169.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      RAI B, SARMA P V, SRINIVASAN V, SHAIJUMON M M, RAMAMURTHY S S. Langmuir, 2021, 37(5):1954-1930.

    10. [10]

      CAO S H, CAI W P, LIU Q, LI Y Q. Annu. Rev. Anal. Chem., 2012, 5:317-336.

    11. [11]

      XIE K X, LIU C, LIU Q, XIAO X X, LI Z, LI M F. Langmuir, 2021, 37(40):11880-11886.

    12. [12]

      XIE K X, JIA S S, ZHANG J H, WANG H, WANG Q. New J. Chem., 2019, 43:14220-14223.

    13. [13]

      BHASKAR S, SINGH A K, DAS P, JANA P, KANVAH S, BHAKTHA B N S, RAMAMURTHY S S. ACS Appl. Mater. Interfaces, 2020, 12(30):34323-34336.

    14. [14]

      RATHNAKUMAR S, BHASKAR S, RAI A, SAIKUMAR D V V, KAMBHAMPATI N S V, SIVARAMAKRISHNAN V, RAMAMURTHY S S. ACS Appl. Nano Mater., 2021, 4(8):8066-8080.

    15. [15]

      FADERA S, CHEN P Y, LIU H L, LEE I C. ACS Appl. Mater. Interfaces, 2021, 13(28):32845-32855.

    16. [16]

    17. [17]

      LIU Y, CHEN Z, SHAO Z, GUO R. Chem. Commun., 2021, 57:3399-3402.

    18. [18]

      TAKEMURA K, GANGANBOINA A B, KHORIS I M, CHOWDHURY A D, PARK E Y. ACS Sens., 2021, 6(7):2605-2612.

    19. [19]

      HWANG J H, PARK S, SON J, PARK J W, NAM J M. Nano Lett., 2021, 21(5):2132-2140.

    20. [20]

      XIE K X, LIU Q, SONG X L, HUO R P, SHI X H, LIU Q L. Anal. Chem., 2021, 93(8):3671-3676.

    21. [21]

      XIE K X, LIU Q, JIA S S, XIAO X X. Anal. Chim. Acta, 2021, 1144:96-101.

    22. [22]

      WANG S Y, LIN Q L, FILBRUN S L, ZHOU R J, AN Q X, YIN Y Q, XU W Z, XU D, LIU C. Sens. Actuators, B, 2021, 328:129073.

    23. [23]

    24. [24]

      MAN T A, SHI J, FAN Y, NI J, WEN C Y, YANG M. ACS Nano, 2021, 15(7):11711-11723.

    25. [25]

      ZHANG Q, YAN H H, RU C, ZHU F, ZOU Y H, GAO F P, HUANG C Z, WANG J. Biosens. Bioelectron., 2022, 201:113942.

    26. [26]

      MIAO Y H, YANG K, ZONG S F, WANG Z Y, CUI Y P. ACS Appl. Nano Mater., 2021, 4(7):6844-6851.

    27. [27]

      ZONG S F, TANG H L, YANG K, WANG H, WANG Z Y, CUI Y P. J. Mater. Chem. B, 2020, 8(36):8459-8466.

    28. [28]

      ZUO T C, GOLDAYN H J, ISAACOFF B P, MASIELLO D J, BITEEN J S. J. Phys. Chem. Lett., 2019, 10:5047-5054.

    29. [29]

    30. [30]

      PENNINCK L, MLADENOWSKI S, NEYTS K. J. Opt., 2010, 12:075001.

    31. [31]

      TOMA K, VALA M, ADAM P, HOMOLA J, KNOLL W, DOSTALEK J. Opt. Express, 2013, 21(8):10121-10132.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    14. [14]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    15. [15]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(12)
  • Abstract views(499)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return