Citation: ZHAN Feng-Ping,  WU Yang-Yi,  DAI Xiao-Hui,  LIANG Chao,  GAO Feng,  WANG Qing-Xiang. Construction and Application of Fe(Ⅲ)-2-Aminoterephthalic Acid Metal-Organic Framework-based Label-free Chloramphenicol Electrochemical Sensor[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 539-548. doi: 10.19756/j.issn.0253-3820.221149 shu

Construction and Application of Fe(Ⅲ)-2-Aminoterephthalic Acid Metal-Organic Framework-based Label-free Chloramphenicol Electrochemical Sensor

  • Corresponding author: WANG Qing-Xiang, axiang236@vip.163.com
  • Received Date: 28 March 2022
    Revised Date: 21 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21802064), the Natural Science Foundation of Fujian Province (Nos. 2021J01989, 2022J01899) and the Science and Technology Project of Fujian Administration for Market Regulation (No. FJMS2020048).

  • The development of rapid and simple electrochemical sensing technology for detection of chloramphenicol (CAP) has important application prospects in food safety and environmental monitoring. Herein, NH2-MIL-88(Fe) was successfully synthesized by a hydrothermal method using FeCl3∙·6H2O and 2-aminoterephthalic acid (2-ATPA) as the starting materials. Then, the NH2-MIL-88(Fe) was covalently anchored on the surface of carboxylated glassy carbon electrode through the amino group on 2-ATPA. Furthermore, the 5'-PO43- modified chloramphenicol aptamer (C-Apt) was self-assembled on the NH2-MIL-88(Fe) surface through the coordination between -PO43- and Fe3+ to construct a novel label-free electrochemical biosensing interface. The immobilization of C-Apt did not need any crosslinking agent or pre-treatment. Electrochemical assays showed that the NH2-MIL-88(Fe) modified electrode had strong catalytic activity for 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 system due to the nano enzymetic activity of NH2-MIL-88(Fe); while the catalytic activity could be inhibited after forming a barrier layer that generated by the capture of CAP by C-Apt, through which the target CAP could be detected through the label-free method. The quantitative analysis results showed that the catalytic current (Ip) for the oxidation of TMB/H2O2 system had a good linear relationship with the negative logarithm of CAP concentration (-lgC) within the concentration range of 1.0 pmol/L -0.1 μmol/L, and the detection limit was as low as 330 fmol/L (S/N=3). The biosensor could be used for detection of CAP residue in actual milk samples, which provided a new idea for the rapid detection of CAP residue in the food field.
  • 加载中
    1. [1]

      XU H, ZHANG Y, LI J, HAO Q, LI X, LIU F. Environ. Pollut., 2019, 257:113610.

    2. [2]

      MAUGI R, GAMBLE B, BUNKA D, PLATT M. Talanta, 2021, 225:122068.

    3. [3]

      YANG T, CHEN H, GE T, WANG J, LI W, JIAO K. Talanta, 2015, 144:1324-1328.

    4. [4]

      CODOGNOTO L, WINTER E, DORETTO K M, MONTEIRO G B, RATH S. Microchim. Acta, 2010, 169(3-4):345-351.

    5. [5]

      KOR K, ZAREI K. J. Electroanal. Chem., 2014, 733:39-46.

    6. [6]

      XIAO L, LI J, LICHTFOUSE E, LI Z, WANG Q, LIU F. J. Hazard. Mater., 2021, 410:124977.

    7. [7]

      WANG X, LI J H, JIAN D, ZHANG Y, SHAN Y K, WANG S Y, LIU F. Sens. Actuators, B, 2021, 329:129173.

    8. [8]

      SONG X, HUANG D, ZHANG L, WANG H, WANG L, BIAN Z. Electrochim. Acta, 2020, 330:135187.

    9. [9]

    10. [10]

      IMPENS S, REYBROECK W, VERCAMMEN J, COURTHEYN D, OOGHE S, DE WASCH K, SMEDTS W, DE BRABANDER H. Anal. Chim. Acta, 2003, 483(1-2):153-163.

    11. [11]

    12. [12]

      XIAO J, HU X, WANG K, ZOU Y, GYIMAH E, YAKUBU S, ZHANG Z. Biosens. Bioelectron., 2020, 150:111883.

    13. [13]

    14. [14]

      YIN J L, GUO W J, QIN X L, XHAO J, PEI M S, DING F. Sens. Actuators, B, 2017, 241:151-159.

    15. [15]

      KIM S N, PARK C G, HUH B K, LEE S H, MIN C H, LEE Y Y, KIM Y K, PARK K H, CHOY Y B. Acta Biomater., 2018, 79:344-353.

    16. [16]

      ZANGO Z U, ABU BAKAR N H H, SAMBUDI N S, JUMBRI K, ABDULLAH N A F, KADIR E A, SAAD B. J. Environ. Chem. Eng., 2020, 8(2):103544.

    17. [17]

      DUAN S, HUANG Y. J. Electroanal. Chem., 2017, 807:253-260.

    18. [18]

    19. [19]

      CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.

    20. [20]

      LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.

    21. [21]

      WANG S, MCGUIRK C M, ROSS M B, WANG S, CHEN P, XING H, LIU Y, MIRKIN C A. J. Am. Chem. Soc., 2017, 139(29):9827-9830.

    22. [22]

      FU Q, LOU J, ZHANG R, PENG L, ZHOU S, YAN W, MO C, LUO J. J. Solid State Chem., 2021, 294:121836.

    23. [23]

      GAO C, ZHANG Q, MA L, SONG P, XIA L X. ChemistrySelect, 2021, 6(18):4466-4472.

    24. [24]

      HOU L, QIN Y M, Lin T R, SUN Y, YE F G, ZHAO S L. Sens. Actuators, B, 2020, 321:128547.

    25. [25]

      PENG R, CHEN W, ZHOU Q. Ionics, 2022, 28(1):451-462.

    26. [26]

      KESAVAN G, CHEN S M. Colloids Surf., A, 2021, 615:126243.

    27. [27]

      ZHANG X, ZHANG Y C, ZHANG J W. Talanta, 2016, 161:567-573.

    28. [28]

      BAIKELI Y, MAMAT X, HE F, XIN X, LI Y, AISA H A, HU G. Ecotoxicol. Environ. Saf., 2020, 204:111066.

    29. [29]

      GAO F, SONG J, ZHANG B, TANAKA H, GAO F, QIU W, WANG Q. Chin. Chem. Lett., 2020, 31(1):181-184.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    11. [11]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Ning LiuMan TianYe ZhangJinming YangZhihao WangWangxi DaiGuixiang QuanJianqiu LeiXiaodong ZhangLiang Tang . Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chinese Chemical Letters, 2025, 36(12): 111063-. doi: 10.1016/j.cclet.2025.111063

    15. [15]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

Metrics
  • PDF Downloads(10)
  • Abstract views(1319)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return