新型聚多巴胺/聚丙烯酸-氢氧化铜双面神纳米粒子的制备及在体外光声影像和化疗-热疗协同癌症治疗中的应用

曹晴 李东 姜艳霞 戚克振 张满杰

引用本文: 曹晴, 李东, 姜艳霞, 戚克振, 张满杰. 新型聚多巴胺/聚丙烯酸-氢氧化铜双面神纳米粒子的制备及在体外光声影像和化疗-热疗协同癌症治疗中的应用[J]. 分析化学, 2022, 50(8): 1205-1216. doi: 10.19756/j.issn.0253-3820.221122 shu
Citation:  CAO Qing,  LI Dong,  JIANG Yan-Xia,  QI Ke-Zhen,  ZHANG Man-Jie. Fabrication of Unique Polydopamine/Poly(acrylic acid)-Copper Hydroxide Janus Nanoparticles for Photoacoustic Imaging and Chemo-Photothermal Cancer Therapy in Vitro[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1205-1216. doi: 10.19756/j.issn.0253-3820.221122 shu

新型聚多巴胺/聚丙烯酸-氢氧化铜双面神纳米粒子的制备及在体外光声影像和化疗-热疗协同癌症治疗中的应用

    通讯作者: 戚克振,E-mail:qkzhen2003@aliyun.com; 张满杰,E-mail:zhangmj454@nenu.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.22002096)、 辽宁省自然科学基金项目(No.2019-BS-219)和辽宁省兴辽英才计划(No.XLYC1807238)资助。 # 共同第一作者

摘要: 制备了双面神(Janus)结构的聚多巴胺/聚丙烯酸-氢氧化铜纳米粒子(PDA/PAA-Cu (OH)2 JNPs)。PDA在近红外(NIR)区有较强的吸收,并且具有优异的生物相容性和可降解性;PAA纳米球与铜离子(Cu2+)配位后形成的PAA-Cu (OH)2纳米粒子具有介孔结构,可用于装载抗癌药物;Cu (OH)2在NIR区有较强的吸收,可用于光热治疗,实现不同功能有机融合,展现协同增效。选用亲水的阿霉素(DOX)作为药物模型,研究了此药物递送系统对肿瘤细胞(HepG-2)的抑制效果。合成的双面神纳米粒子具有高的药物(阿霉素)装载能力(药物负载容量=0.87 mg/mg)、良好的光热转换效率(45.9%)、pH/近红外(NIR)双重响应药物释放性质和光声(PA)成像能力,可用于体外PA影像和化疗-热疗协同癌症治疗。体外毒性实验结果表明,DOX负载的PDA/PAA-Cu (OH)2 JNPs加激光组呈现明显的癌细胞死亡,细胞存活率极低(7.9%)。

English


    1. [1]

      CLEARY A S, LEONARD T L, GESTL S A, GUNTHER E J. Nature, 2014, 508(7494):113-117.CLEARY A S, LEONARD T L, GESTL S A, GUNTHER E J. Nature, 2014, 508(7494):113-117.

    2. [2]

      SIEGEL R L, MILLER K D, JEMAL A. CA Cancer J. Clin., 2019, 69(1):7-34.SIEGEL R L, MILLER K D, JEMAL A. CA Cancer J. Clin., 2019, 69(1):7-34.

    3. [3]

      RIBAS A, WOLCHOK J D. Science, 2018, 359(6382):1350-1355.RIBAS A, WOLCHOK J D. Science, 2018, 359(6382):1350-1355.

    4. [4]

      LIU Y J, BHATTARAI P, DAI J F, CHEN X Y. Chem. Soc. Rev., 2019, 48(7):2053-2108.LIU Y J, BHATTARAI P, DAI J F, CHEN X Y. Chem. Soc. Rev., 2019, 48(7):2053-2108.

    5. [5]

      GAI S L, YANG G X, YANG P P, HE F, LIN J, JIN D Y, XING B G. Nano Today, 2018, 19:146-187.GAI S L, YANG G X, YANG P P, HE F, LIN J, JIN D Y, XING B G. Nano Today, 2018, 19:146-187.

    6. [6]

      CHENG L, LIU J J, GU X, GONG H, SHI X Z, LIU T, WANG C, WANG X Y, LIU G, XING H Y, BU W B, SUN B Q, LIU Z. Adv. Mater., 2014, 26(12):1886-1893.CHENG L, LIU J J, GU X, GONG H, SHI X Z, LIU T, WANG C, WANG X Y, LIU G, XING H Y, BU W B, SUN B Q, LIU Z. Adv. Mater., 2014, 26(12):1886-1893.

    7. [7]

      SHAO Y L, LIU B, DI Z H, ZHANG G, SUN L D, LI L L, YAN C H. J. Am. Chem. Soc., 2020, 142(8):3939-3946.SHAO Y L, LIU B, DI Z H, ZHANG G, SUN L D, LI L L, YAN C H. J. Am. Chem. Soc., 2020, 142(8):3939-3946.

    8. [8]

      CHEN Y, TAN C L, ZHANG H, WANG L J. Chem. Soc. Rev., 2015, 44(9):2681-2701.CHEN Y, TAN C L, ZHANG H, WANG L J. Chem. Soc. Rev., 2015, 44(9):2681-2701.

    9. [9]

      MROWCZYNSKI R. ACS Appl. Mater. Interfaces, 2018, 10(9):7541-7561.MROWCZYNSKI R. ACS Appl. Mater. Interfaces, 2018, 10(9):7541-7561.

    10. [10]

      TSAI M F, CHANG S H G, CHENG F Y, SHANMUGAM V, CHENG Y S, SU C H, YEH C S. ACS Nano, 2013, 7(6):5330-5342.TSAI M F, CHANG S H G, CHENG F Y, SHANMUGAM V, CHENG Y S, SU C H, YEH C S. ACS Nano, 2013, 7(6):5330-5342.

    11. [11]

      XIA Y N, LI W Y, COBLER C M, CHEN J Y, XIA X H, ZHANG Q, YANG M X, CHO E C, BROWN P K. Acc. Chem. Res., 2011, 44(10):914-924.XIA Y N, LI W Y, COBLER C M, CHEN J Y, XIA X H, ZHANG Q, YANG M X, CHO E C, BROWN P K. Acc. Chem. Res., 2011, 44(10):914-924.

    12. [12]

      YUAN H, KHOURY C G, HWANG H, WILSON C M, GRANT G A, VO-DINH T. Nanotechnology, 2012, 23(7):075102.YUAN H, KHOURY C G, HWANG H, WILSON C M, GRANT G A, VO-DINH T. Nanotechnology, 2012, 23(7):075102.

    13. [13]

      TIAN Q, JIANG F, ZOU R, LIU Q, CHEN Z, ZHU M, YANG S, WANG J, WANG J, HU J. ACS Nano, 2011, 5(12):9761-9771.TIAN Q, JIANG F, ZOU R, LIU Q, CHEN Z, ZHU M, YANG S, WANG J, WANG J, HU J. ACS Nano, 2011, 5(12):9761-9771.

    14. [14]

      WANG D D, WU H H, ZHOU J J, XU P P, WANG C L, SHI R H, WANG H B, WANG H, GUO Z, CHEN Q W. Adv. Sci., 2018, 5(6):1800287.WANG D D, WU H H, ZHOU J J, XU P P, WANG C L, SHI R H, WANG H B, WANG H, GUO Z, CHEN Q W. Adv. Sci., 2018, 5(6):1800287.

    15. [15]

      CHENG W, ZENG X W, CHEN H Z, LI Z M, ZENG W F, MEI L, ZHAO Y L. ACS Nano, 2019, 13(8):8537-8565.CHENG W, ZENG X W, CHEN H Z, LI Z M, ZENG W F, MEI L, ZHAO Y L. ACS Nano, 2019, 13(8):8537-8565.

    16. [16]

      ZHU Z J, SU M. Nanomaterials, 2017, 7(7):160.ZHU Z J, SU M. Nanomaterials, 2017, 7(7):160.

    17. [17]

      LIU Y L, AI K L, LU L H. Chem. Rev., 2014, 114(9):5057-5115.LIU Y L, AI K L, LU L H. Chem. Rev., 2014, 114(9):5057-5115.

    18. [18]

      LIU S K, LI W T, DONG S M, ZHANG F M, DONG Y S, TIAN B S, HE F, GAI S L, YANG P P. Nanoscale, 2020, 12(47):24146-24161.LIU S K, LI W T, DONG S M, ZHANG F M, DONG Y S, TIAN B S, HE F, GAI S L, YANG P P. Nanoscale, 2020, 12(47):24146-24161.

    19. [19]

      LIANG S, DENG X R, CHANG Y, SUN C Q, SHAO S, XIE Z X, XIAO X, MA P A, ZHANG H Y, CHENG Z Y, LIN J. Nano Lett., 2019, 19(6):4134-4145.LIANG S, DENG X R, CHANG Y, SUN C Q, SHAO S, XIE Z X, XIAO X, MA P A, ZHANG H Y, CHENG Z Y, LIN J. Nano Lett., 2019, 19(6):4134-4145.

    20. [20]

      LIU X, WANG Q, LI C, ZOU R J, LI B, SONG G S, XU K B, ZHENG Y, HU J Q. Nanoscale, 2014, 6(8):4361-4370.LIU X, WANG Q, LI C, ZOU R J, LI B, SONG G S, XU K B, ZHENG Y, HU J Q. Nanoscale, 2014, 6(8):4361-4370.

    21. [21]

      XIAO Q F, ZHENG X P, BU W B, GE W Q, ZHANG S J, CHEN F, XING H Y, REN Q G, FAN W P, ZHAO K L, HUA Y Q, SHI J L. J. Am. Chem. Soc., 2013, 135(35):13041-13048.XIAO Q F, ZHENG X P, BU W B, GE W Q, ZHANG S J, CHEN F, XING H Y, REN Q G, FAN W P, ZHAO K L, HUA Y Q, SHI J L. J. Am. Chem. Soc., 2013, 135(35):13041-13048.

    22. [22]

      ZHANG L Y, ZHANG M J, ZHOU L, HAN Q H, CHEN X J, LI S N, LI L, SU Z M, WANG C G. Biomaterials, 2018, 181:113-125.ZHANG L Y, ZHANG M J, ZHOU L, HAN Q H, CHEN X J, LI S N, LI L, SU Z M, WANG C G. Biomaterials, 2018, 181:113-125.

    23. [23]

      FENG J, YU W Q, XU Z, WANG F. Chem. Sci., 2020, 11(6):1649-1656.FENG J, YU W Q, XU Z, WANG F. Chem. Sci., 2020, 11(6):1649-1656.

    24. [24]

      LIN X H, LIU S Y, ZHANG X, ZHU R, CHEN S, CHEN X Y, SONG J B, YANG H H. Angew. Chem., Int. Ed., 2020, 59(4):1682-1688.LIN X H, LIU S Y, ZHANG X, ZHU R, CHEN S, CHEN X Y, SONG J B, YANG H H. Angew. Chem., Int. Ed., 2020, 59(4):1682-1688.

    25. [25]

      BRADLEY L C, STEBE K J, LEE D. J. Am. Chem. Soc., 2016, 138(36):11437-11440.BRADLEY L C, STEBE K J, LEE D. J. Am. Chem. Soc., 2016, 138(36):11437-11440.

    26. [26]

      XING H, WANG Z D, XU Z D, WONG N Y, XIANG Y, LIU G L, LIU Y. ACS Nano, 2012, 6(1):802-809.XING H, WANG Z D, XU Z D, WONG N Y, XIANG Y, LIU G L, LIU Y. ACS Nano, 2012, 6(1):802-809.

    27. [27]

      JIANG Y W, TIAN B Z. Nat. Rev. Mater., 2018, 3(12):473-490.JIANG Y W, TIAN B Z. Nat. Rev. Mater., 2018, 3(12):473-490.

    28. [28]

      REGUERA J, ABERASTURI D J D, HANRIKSEN-LACEY M, LANGER J, ESPINOSA A, SZCZUPAK B, WILHELM C, LIZ-MARZAN L M. Nanoscale, 2017, 9(27):9467-9480.REGUERA J, ABERASTURI D J D, HANRIKSEN-LACEY M, LANGER J, ESPINOSA A, SZCZUPAK B, WILHELM C, LIZ-MARZAN L M. Nanoscale, 2017, 9(27):9467-9480.

    29. [29]

      LOPEZ V, VILLEGAS M R, RODRIGUEZ V, VILLAVERDE G, LOZANO D, BAEZA A, REGI M V. ACS Appl. Mater. Interfaces, 2017, 9(32):26697-26706.LOPEZ V, VILLEGAS M R, RODRIGUEZ V, VILLAVERDE G, LOZANO D, BAEZA A, REGI M V. ACS Appl. Mater. Interfaces, 2017, 9(32):26697-26706.

    30. [30]

      REN H, ZHANG L Y, AN J P, WANG T T, LI L, SI X Y, HE L, WU X T, WANG C G, SU Z M. Chem. Commun., 2014, 50(8):1000-1002.REN H, ZHANG L Y, AN J P, WANG T T, LI L, SI X Y, HE L, WU X T, WANG C G, SU Z M. Chem. Commun., 2014, 50(8):1000-1002.

    31. [31]

      XING L, ZHENG H, GAO Y. Adv. Mater., 2012, 24(48):6433-6437.XING L, ZHENG H, GAO Y. Adv. Mater., 2012, 24(48):6433-6437.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  823
  • HTML全文浏览量:  142
文章相关
  • 收稿日期:  2022-03-11
  • 修回日期:  2022-04-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章