Citation: CAO Qing,  LI Dong,  JIANG Yan-Xia,  QI Ke-Zhen,  ZHANG Man-Jie. Fabrication of Unique Polydopamine/Poly(acrylic acid)-Copper Hydroxide Janus Nanoparticles for Photoacoustic Imaging and Chemo-Photothermal Cancer Therapy in Vitro[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1205-1216. doi: 10.19756/j.issn.0253-3820.221122 shu

Fabrication of Unique Polydopamine/Poly(acrylic acid)-Copper Hydroxide Janus Nanoparticles for Photoacoustic Imaging and Chemo-Photothermal Cancer Therapy in Vitro

  • Corresponding author: QI Ke-Zhen,  ZHANG Man-Jie, 
  • Received Date: 11 March 2022
    Revised Date: 27 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22002096), the Natural Science Foundation of Liaoning Province, China (No.2019BS219) and the Liaoning Revitalization Talents Program (No.XLYC1807238).

  • The polydopamine/poly(acrylic acid)-copper hydroxide Janus nanoparticles (PDA/PAA-Cu(OH)2 JNPs) were prepared by a novel and simple method. PDA had a strong absorption in the near infrared (NIR) region, with excellent biocompatibility and degradation, and the PAA-Cu(OH)2 was formed via coordination between the carboxyl groups of PAA and copper ions (Cu2+) by introducing Cu(NO3)2, which was used for loading anticancer drug. The PAA-Cu(OH)2 domains also had strong absorption in the NIR region for photothermal therapy, realizing the organic fusion of different functions and showing synergistic effect. The hydrophilic doxorubicin (DOX) was chosen as drug model for exposing the inhibition efficiency of the HepG-2 cells. The obtained JNPs had high drug-loading contents (0.87 mg/mg, DOX/JNPs), good photothermal conversion efficiency (45.9%), pH/NIR bimodal-triggered controlled drug release ability and photoacoustic (PA) imaging capacity, enabling the JNPs to be applied to PA imaging and synergistic cancer chemo-phototherapy in vitro. The cytotoxicity assay in vitro proved that the group treated with DOX-loaded PDA/PAA-Cu(OH)2 JNPs plus laser showed distinct cell death, and the viability of the cells were exceedingly low (7.9%).
  • 加载中
    1. [1]

      CLEARY A S, LEONARD T L, GESTL S A, GUNTHER E J. Nature, 2014, 508(7494):113-117.

    2. [2]

      SIEGEL R L, MILLER K D, JEMAL A. CA Cancer J. Clin., 2019, 69(1):7-34.

    3. [3]

      RIBAS A, WOLCHOK J D. Science, 2018, 359(6382):1350-1355.

    4. [4]

      LIU Y J, BHATTARAI P, DAI J F, CHEN X Y. Chem. Soc. Rev., 2019, 48(7):2053-2108.

    5. [5]

      GAI S L, YANG G X, YANG P P, HE F, LIN J, JIN D Y, XING B G. Nano Today, 2018, 19:146-187.

    6. [6]

      CHENG L, LIU J J, GU X, GONG H, SHI X Z, LIU T, WANG C, WANG X Y, LIU G, XING H Y, BU W B, SUN B Q, LIU Z. Adv. Mater., 2014, 26(12):1886-1893.

    7. [7]

      SHAO Y L, LIU B, DI Z H, ZHANG G, SUN L D, LI L L, YAN C H. J. Am. Chem. Soc., 2020, 142(8):3939-3946.

    8. [8]

      CHEN Y, TAN C L, ZHANG H, WANG L J. Chem. Soc. Rev., 2015, 44(9):2681-2701.

    9. [9]

      MROWCZYNSKI R. ACS Appl. Mater. Interfaces, 2018, 10(9):7541-7561.

    10. [10]

      TSAI M F, CHANG S H G, CHENG F Y, SHANMUGAM V, CHENG Y S, SU C H, YEH C S. ACS Nano, 2013, 7(6):5330-5342.

    11. [11]

      XIA Y N, LI W Y, COBLER C M, CHEN J Y, XIA X H, ZHANG Q, YANG M X, CHO E C, BROWN P K. Acc. Chem. Res., 2011, 44(10):914-924.

    12. [12]

      YUAN H, KHOURY C G, HWANG H, WILSON C M, GRANT G A, VO-DINH T. Nanotechnology, 2012, 23(7):075102.

    13. [13]

      TIAN Q, JIANG F, ZOU R, LIU Q, CHEN Z, ZHU M, YANG S, WANG J, WANG J, HU J. ACS Nano, 2011, 5(12):9761-9771.

    14. [14]

      WANG D D, WU H H, ZHOU J J, XU P P, WANG C L, SHI R H, WANG H B, WANG H, GUO Z, CHEN Q W. Adv. Sci., 2018, 5(6):1800287.

    15. [15]

      CHENG W, ZENG X W, CHEN H Z, LI Z M, ZENG W F, MEI L, ZHAO Y L. ACS Nano, 2019, 13(8):8537-8565.

    16. [16]

      ZHU Z J, SU M. Nanomaterials, 2017, 7(7):160.

    17. [17]

      LIU Y L, AI K L, LU L H. Chem. Rev., 2014, 114(9):5057-5115.

    18. [18]

      LIU S K, LI W T, DONG S M, ZHANG F M, DONG Y S, TIAN B S, HE F, GAI S L, YANG P P. Nanoscale, 2020, 12(47):24146-24161.

    19. [19]

      LIANG S, DENG X R, CHANG Y, SUN C Q, SHAO S, XIE Z X, XIAO X, MA P A, ZHANG H Y, CHENG Z Y, LIN J. Nano Lett., 2019, 19(6):4134-4145.

    20. [20]

      LIU X, WANG Q, LI C, ZOU R J, LI B, SONG G S, XU K B, ZHENG Y, HU J Q. Nanoscale, 2014, 6(8):4361-4370.

    21. [21]

      XIAO Q F, ZHENG X P, BU W B, GE W Q, ZHANG S J, CHEN F, XING H Y, REN Q G, FAN W P, ZHAO K L, HUA Y Q, SHI J L. J. Am. Chem. Soc., 2013, 135(35):13041-13048.

    22. [22]

      ZHANG L Y, ZHANG M J, ZHOU L, HAN Q H, CHEN X J, LI S N, LI L, SU Z M, WANG C G. Biomaterials, 2018, 181:113-125.

    23. [23]

      FENG J, YU W Q, XU Z, WANG F. Chem. Sci., 2020, 11(6):1649-1656.

    24. [24]

      LIN X H, LIU S Y, ZHANG X, ZHU R, CHEN S, CHEN X Y, SONG J B, YANG H H. Angew. Chem., Int. Ed., 2020, 59(4):1682-1688.

    25. [25]

      BRADLEY L C, STEBE K J, LEE D. J. Am. Chem. Soc., 2016, 138(36):11437-11440.

    26. [26]

      XING H, WANG Z D, XU Z D, WONG N Y, XIANG Y, LIU G L, LIU Y. ACS Nano, 2012, 6(1):802-809.

    27. [27]

      JIANG Y W, TIAN B Z. Nat. Rev. Mater., 2018, 3(12):473-490.

    28. [28]

      REGUERA J, ABERASTURI D J D, HANRIKSEN-LACEY M, LANGER J, ESPINOSA A, SZCZUPAK B, WILHELM C, LIZ-MARZAN L M. Nanoscale, 2017, 9(27):9467-9480.

    29. [29]

      LOPEZ V, VILLEGAS M R, RODRIGUEZ V, VILLAVERDE G, LOZANO D, BAEZA A, REGI M V. ACS Appl. Mater. Interfaces, 2017, 9(32):26697-26706.

    30. [30]

      REN H, ZHANG L Y, AN J P, WANG T T, LI L, SI X Y, HE L, WU X T, WANG C G, SU Z M. Chem. Commun., 2014, 50(8):1000-1002.

    31. [31]

      XING L, ZHENG H, GAO Y. Adv. Mater., 2012, 24(48):6433-6437.

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    3. [3]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    4. [4]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    5. [5]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    11. [11]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    16. [16]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(10)
  • Abstract views(1011)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return