Citation: BAO Xun,  ZHANG Qiang-Ling,  LIANG Qu,  SUN Qin,  XU Wei,  ZOU Xue,  HUANG Chao-Qun,  SHEN Cheng-Yin,  CHU Yan-Nan. Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 340-347. doi: 10.19756/j.issn.0253-3820.221110 shu

Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method

  • Corresponding author: ZHANG Qiang-Ling, qlzhang@cmpt.ac.cn
  • Received Date: 1 March 2022
    Revised Date: 3 November 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22076190, 21876176) and the HFIPS Director′s Fund (Nos. BJPY2021B08, YZJJ2022QN45, YZJJZX202009).

  • Concentration calibration is the premise of accurate quantitative detection of gas analyzer, and concentration calibration cannot be separated from gas dilution system. In this work, a novel wet gas preparation method (proportion-integral (PI) two-flow method) was established, and that a simple yet accurate gas dilution system with humidity control function based on PI two-flow method was developed, which was not affected by intermediate variables. Firstly, the performance of the humidifier, an essential part of the system, was investigated. The results showed that there was a certain fluctuation (96%-103%) in the relative humidity (RH) at the outlet of the humidifier. Therefore, the PI two-flow method was developed to reduce the influence of the fluctuation on the humidity control accuracy of the whole system. A dew point transmitter was used to measure the RH at the system′s outlet as a feedback signal to automatically adjust the ratio of dry and wet gas, thereby realizing accurate control of humidity. The wet gas was prepared by the following method, the dry gas passing through a self-made bubbling humidifier. Subsequently, the system′s response characteristics were investigated by step input and sinusoidal input under different flow rates and temperature conditions. The results showed that the RH control range of the system was 5%-100%. The flow rate of the system could be up to 1000 mL/min. The RH control accuracy could realize 0.026%RH (25 °C, 100%RH) (without considering the measurement deviation of the dewpoint transmitter). The setting time reached 38 s (25 °C, 500 mL/min). The system could track the sinusoidal input when the period was more than 175 s in 1000 mL/min. Finally, the application research of the system was implemented by using proton transfer reaction mass spectrometry (PTR-MS). As the RH of sampling air of PTR-MS gradually increased, the relative ratio of H3O+ decreased, and the relative proportion of H3O+(H2O) increased. The above application showed that the new system could meet the application requirements of gas analysis instruments with large and continuous sampling flow rate in a wide humidity range (10%-100%). The new system would be expected to calibrate gas measurements instruments sensitive to humidity.
  • 加载中
    1. [1]

      SARKAR C, SINHA V, KUMAR V, RUPAKHETI M, PANDAY A, MAHATA K S, RUPAKHETI D, KATHAYAT B, LAWRENCE M G. Atmos. Chem. Phys., 2016, 16(6):3979-4003.

    2. [2]

      MATSUMOTO N, WATANABE T, KATO K. J. Chromatogr. A, 2013, 1282:190-193.

    3. [3]

      JARDINE K J, HENDERSON W M, HUXMAN T E, ABRELL L. Atmos. Meas. Tech., 2010, 3(6):1569-1576.

    4. [4]

      TAIPALE R, RUUSKANEN T M, RINNE J, KAJOS M K, HAKOLA H, POHJA T, KULMALA M. Atmos. Chem. Phys., 2008, 8(22):6681-6698.

    5. [5]

      PANG X. J. Environ. Sci., 2015, 32:196-206.

    6. [6]

      LI R, WARNEKE C, GRAUS M, FIELD R, GEIGER F, VERES P R, SOLTIS J, LI S M, MURPHY S M, SWEENEY C, PÉTRON G, ROBERTS J M, DE GOUW J. Atmos. Meas. Tech., 2014, 7(10):3597-3610.

    7. [7]

      WARNEKE C, VERES P, HOLLOWAY J S, STUTZ J, TSAI C, ALVAREZ S, RAPPENGLUECK B, FEHSENFELD F C, GRAUS M, GILMAN J B, DE GOUW J A. Atmos. Meas. Tech., 2011, 4(10):2345-2358.

    8. [8]

      HAN J, LIU X, CHEN D, JIANG M. J. Aerosol Sci., 2020, 139:105462.

    9. [9]

      CHEN H Y, CHEN C. Sensors, 2019, 19(5):1213.

    10. [10]

      ASHTON E, OAKLEY W C, BRACK P, DANN S E. ACS Appl. Energy Mater., 2022, 5(7):8336-8345.

    11. [11]

      EGGERT G. Heritage Sci., 2022, 10(1):54.

    12. [12]

      MILOSEVIC D. N, STEPANIC M. N, BABIC M. M. Therm. sci., 2012, 16(1):193-205.

    13. [13]

      CHOI B I, LEE S W, KIM J C, WOO S B. Int. J. Thermophys., 2015, 36(8):2231-2241.

    14. [14]

      ISHIWATA N, ABE H. AIP Adv., 2022, 12(3):035114.

    15. [15]

      ABD EL-GALIL D M, MAHMOUD E. Measurement, 2018, 124:159-162.

    16. [16]

      GÓMEZ J I S, TAKHTEHFOULADI E S, SCHLÖGL R, RULAND H. Chem. Ing. Tech., 2020, 92(10):1574-1585.

    17. [17]

      KARI E, MIETTINEN P, YLI-PIRILÄ P, VIRTANEN A, FAIOLA C L. Int. J. Mass Spectrom., 2018, 430:87-97.

    18. [18]

      ABD-UR-REHMAN H M, AL-SULAIMAN F A. Appl. Therm. Eng., 2017, 120:530-536.

    19. [19]

      PARK S, OH I H. J. Power Sources, 2009, 188(2):498-501.

    20. [20]

      RAMAN S, SWAMINATHAN S, BHARDWAJ S, TANNERU H K, BULLECKS B, RENGASWAMY R. Int. J. Hydrogen Energy, 2019, 44(1):389-407.

    21. [21]

      SUNG C C, BAI C Y, CHEN J H, CHANG S J. J. Power Sources, 2013, 239:151-156.

    22. [22]

      JIA Y, ZHANG R, LV X, ZHANG T, FAN Z. Processes, 2022, 10(3):534.

    23. [23]

      LIU C, ZHAO J, GU J, DU Y, LI Z, ZHU Z, MAO E. Appl. Sci., 2020, 10(9):3179.

    24. [24]

      SUN Q, BAO X, LIANG Q, XU W, ZHANG Q, ZOU X, HUANG C, SHEN C, CHU Y. J. Chromatogr. A, 2022, 1676:463210.

    25. [25]

      RAJESHWARAN S, AGEES KUMAR C, GANAPATHY K. Intell. Autom. Soft Comput., 2023, 35(2):1611-1625.

    26. [26]

      MANAP H H, ABDUL WAHAB A K, MOHAMED ZUKI F. Biomed. Signal Process. Control, 2021, 64:102300.

    27. [27]

      LAWRENCE M G. Bull. Am. Meteorol. Soc., 2005, 86(2):225-234.

  • 加载中
    1. [1]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    2. [2]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    4. [4]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    5. [5]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    8. [8]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    9. [9]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    10. [10]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    11. [11]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    12. [12]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    13. [13]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Zengbo Ke Baoyue Cao Xiaojie Hou Youying Di Shengli Gao . Exploration of Rare Gases in the Solar System. University Chemistry, 2025, 40(10): 130-155. doi: 10.12461/PKU.DXHX202410073

    17. [17]

      Wanzhang Zhang Yalan Zhong Chi Huang . Improved Calibration Method for Wet Gas Flowmeters. University Chemistry, 2025, 40(11): 254-262. doi: 10.12461/PKU.DXHX202412121

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

Metrics
  • PDF Downloads(3)
  • Abstract views(1761)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return