自吸式空心针电晕放电离子源的开发及应用

滕科国 高静 杨丽丽 余泉 王晓浩

引用本文: 滕科国, 高静, 杨丽丽, 余泉, 王晓浩. 自吸式空心针电晕放电离子源的开发及应用[J]. 分析化学, 2022, 50(8): 1143-1149. doi: 10.19756/j.issn.0253-3820.221094 shu
Citation:  TENG Ke-Guo,  GAO Jing,  YANG Li-Li,  YU Quan,  WANG Xiao-Hao. Development and Application of Self-aspiration Hollow Needle Corona Discharge Ionization Source[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1143-1149. doi: 10.19756/j.issn.0253-3820.221094 shu

自吸式空心针电晕放电离子源的开发及应用

    通讯作者: 余泉,E-mail:yu.quan@sz.tsinghua.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21775085)、 河北省重点研发计划项目(No.19275509D)和深圳市基础研究项目(No.JCYJ20180508152013054)资助。

摘要: 搭建了一套自吸式电晕放电离子源,用于挥发性有机物的检测。此离子源结构简单,使用注射器针头作为电晕放电针,利用针头的尖端产生电晕放电,针头中空的结构作为气态样品的传输通路,使样品能高效通过电晕区以提高离子化效率。针尖置于一个密闭的电晕腔体中,腔体与质谱进样接口直接相连,以利用质谱仪的抽气能力进行自吸式进样,同时还能避免周围环境因素对电离过程的影响。另外,此装置还可以搭配注射器针筒使用,方便样品的采集、存储以及自动进样。测试结果表明,所开发的离子源操作方便、响应快、稳定性好,对苯胺检测可以获得nL/L级的检出限,具有较好的应用前景。

English


    1. [1]

      BECKER R, DORGERLOH U, HELMIS M, MUMME J, DIAKITE M, NEHLS I. Bioresour. Technol., 2013, 130:621-628.BECKER R, DORGERLOH U, HELMIS M, MUMME J, DIAKITE M, NEHLS I. Bioresour. Technol., 2013, 130:621-628.

    2. [2]

      BELLUOMO I, BOSHIER P R, MYRIDAKIS A, VADHWANA B, MARKAR S R, SPANEL P, HANNA G B. Nat. Protoc., 2021:16(7):3419-3438.BELLUOMO I, BOSHIER P R, MYRIDAKIS A, VADHWANA B, MARKAR S R, SPANEL P, HANNA G B. Nat. Protoc., 2021:16(7):3419-3438.

    3. [3]

      BIASIOLI F, YERETZIAN C, MÄRK T D, DEWULF J, VAN LANGENHOVE H. TrAC-Trends Anal. Chem., 2011, 30(7):1003-1017.BIASIOLI F, YERETZIAN C, MÄRK T D, DEWULF J, VAN LANGENHOVE H. TrAC-Trends Anal. Chem., 2011, 30(7):1003-1017.

    4. [4]

      DUBROW G A, FORERO D P, PETERSON D G. Food Chem., 2022, 378:132043.DUBROW G A, FORERO D P, PETERSON D G. Food Chem., 2022, 378:132043.

    5. [5]

      RADICA F, VENTURA G D, MALFATTI L, GUIDI M C, D'ARCO A, GRILLI A, MARCELLI A, INNOCENZI P. Talanta, 2021, 233:122510.RADICA F, VENTURA G D, MALFATTI L, GUIDI M C, D'ARCO A, GRILLI A, MARCELLI A, INNOCENZI P. Talanta, 2021, 233:122510.

    6. [6]

      SPINELLE L, GERBOLES M, KOK G, PERSIJN S, SAUERWALD T. Sensors (Basel), 2017, 17(7):1520.SPINELLE L, GERBOLES M, KOK G, PERSIJN S, SAUERWALD T. Sensors (Basel), 2017, 17(7):1520.

    7. [7]

      LI Yang, LI Qing-Yun, XU Chu-Ting, RUAN Hui-Wen, ZHAO Kun, HUA Lei, LI Hai-Yang. Chin. J. Anal. Chem., 2022, 50(2):183-197.李杨,李庆运,徐楚婷,阮慧文,赵琨,花磊,李海洋.分析化学, 2022, 50(2):183-197.

    8. [8]

      GIANNOUKOS S, BRKIC'B, TAYLOR S, MARSHALL A, VERBECK G F. Chem. Rev., 2016, 116(14):8146-8172.GIANNOUKOS S, BRKIC'B, TAYLOR S, MARSHALL A, VERBECK G F. Chem. Rev., 2016, 116(14):8146-8172.

    9. [9]

      GOULD O, DRABINSKA N, RATCLIFFE N, COSTELLO B D. Molecules, 2021, 26(23):7185.GOULD O, DRABINSKA N, RATCLIFFE N, COSTELLO B D. Molecules, 2021, 26(23):7185.

    10. [10]

      RATIU I A, LIGOR T, BOCOS-BINTINTAN V, BUSZEWSKI B. Bioanalysis, 2017, 9(14):1069-1092.RATIU I A, LIGOR T, BOCOS-BINTINTAN V, BUSZEWSKI B. Bioanalysis, 2017, 9(14):1069-1092.

    11. [11]

      CASAC-FERREIRA A M, NOGAL-SANCHEZ M D, PÉREZ-PAVON J L, MORENO-CORDERO B. Anal. Chim. Acta, 2019, 1045:10-22.CASAC-FERREIRA A M, NOGAL-SANCHEZ M D, PÉREZ-PAVON J L, MORENO-CORDERO B. Anal. Chim. Acta, 2019, 1045:10-22.

    12. [12]

      SHI W Y, HUO X M, TIAN Y, LU X Q, YANG L L, ZHOU Q, WANG X H, YU Q. Talanta, 2021, 230:122352.SHI W Y, HUO X M, TIAN Y, LU X Q, YANG L L, ZHOU Q, WANG X H, YU Q. Talanta, 2021, 230:122352.

    13. [13]

      ZHANG Q, TIAN Y, ALIANG M, YU Q, WANG X H. Rapid Commun. Mass Spectrom., 2020, 34(6):e8621.ZHANG Q, TIAN Y, ALIANG M, YU Q, WANG X H. Rapid Commun. Mass Spectrom., 2020, 34(6):e8621.

    14. [14]

      WANG Yu-Ning, CHEN Jun-Hui, HE Xiu-Ping, WANG Jiu-Ming, XIN Ming, WANG Bao-Dong, WANG Xiao-Ru. Chin. J. Anal. Chem., 2021, 49(2):282-291.王愉宁,陈军辉,何秀平,王九明,辛明,王保栋,王小如.分析化学, 2021, 49(2):282-291.

    15. [15]

      MENG X Z, TANG C W, ZHANG C X, LI D Y, XU W, ZHAI Y B. J. Am. Soc. Mass Spectrom., 2020, 31(4):961-968.MENG X Z, TANG C W, ZHANG C X, LI D Y, XU W, ZHAI Y B. J. Am. Soc. Mass Spectrom., 2020, 31(4):961-968.

    16. [16]

      GENG X, ZHAO Z Y, LI H L, CHEN D D Y. Anal. Chem., 2021, 93(50):16813-16820.GENG X, ZHAO Z Y, LI H L, CHEN D D Y. Anal. Chem., 2021, 93(50):16813-16820.

    17. [17]

      CHEN L C, YU Z, FURUYA H, HASHIMOTO Y, TAKEKAWA K, SUZUKI H, ARIYADA O, HIRAOKA K. J. Mass Spectrom., 2010, 45(8):861-869.CHEN L C, YU Z, FURUYA H, HASHIMOTO Y, TAKEKAWA K, SUZUKI H, ARIYADA O, HIRAOKA K. J. Mass Spectrom., 2010, 45(8):861-869.

    18. [18]

      ZHU J J, HILL J E. Food Microbiol., 2013, 34(2):412-417.ZHU J J, HILL J E. Food Microbiol., 2013, 34(2):412-417.

    19. [19]

      WOLF J C, SCHAER M, SIEGENTHALER P, ZENOBI R. Anal. Chem., 2015, 87(1):723-729.WOLF J C, SCHAER M, SIEGENTHALER P, ZENOBI R. Anal. Chem., 2015, 87(1):723-729.

    20. [20]

      ZHONG Q S, CHENG F, LIANG J C, WANG X Z, CHEN Y H, FANG X Y, HU L H, HANG Y P. Sci. Rep., 2019, 9:13139.ZHONG Q S, CHENG F, LIANG J C, WANG X Z, CHEN Y H, FANG X Y, HU L H, HANG Y P. Sci. Rep., 2019, 9:13139.

    21. [21]

      TOWNSEND J S, EDMUNDS P J. Philos. Mag., 1914, 27(161):789-801.TOWNSEND J S, EDMUNDS P J. Philos. Mag., 1914, 27(161):789-801.

    22. [22]

      ORTÉGA P, HEILBRONNER F, RVHLING F, DÍAZ R, RODIōRE M. J. Phys. D:Appl. Phys., 2005, 38(13):2215-2226.ORTÉGA P, HEILBRONNER F, RVHLING F, DÍAZ R, RODIōRE M. J. Phys. D:Appl. Phys., 2005, 38(13):2215-2226.

    23. [23]

      VALADBEIGI Y, ILBEIGI V, MICHALCZUK B, SABO M, MATEJCIK S. J. Phys. Chem. A, 2019, 123(1):313-322.VALADBEIGI Y, ILBEIGI V, MICHALCZUK B, SABO M, MATEJCIK S. J. Phys. Chem. A, 2019, 123(1):313-322.

    24. [24]

      SONG L X, YOU Y, EVANS-NGUYEN T. Anal. Chem., 2019, 91(1):912-918.SONG L X, YOU Y, EVANS-NGUYEN T. Anal. Chem., 2019, 91(1):912-918.

    25. [25]

      NIKOLAEV E, RITER L S, LAUGHLIN B C, HANDBERG E, COOKS R G. Eur. J. Mass Spectrom., 2004, 10(2):197-204.NIKOLAEV E, RITER L S, LAUGHLIN B C, HANDBERG E, COOKS R G. Eur. J. Mass Spectrom., 2004, 10(2):197-204.

    26. [26]

      LEE S, KULYK D S, MARANO N, BADU-TAWIAH A K. Anal. Chem., 2021, 93(4):2440-2448.LEE S, KULYK D S, MARANO N, BADU-TAWIAH A K. Anal. Chem., 2021, 93(4):2440-2448.

    27. [27]

      ZHANG Q, LIN L, YU Q, WANG X H. RSC Adv., 2020, 10(7):4103-4109.ZHANG Q, LIN L, YU Q, WANG X H. RSC Adv., 2020, 10(7):4103-4109.

    28. [28]

      SABO M, SMATEJCIK S. Anal. Chem., 2012, 84(12):5327-5334.SABO M, SMATEJCIK S. Anal. Chem., 2012, 84(12):5327-5334.

    29. [29]

      SANDER R. Atmos. Chem. Phys., 2015, 15(8):4399-4981.SANDER R. Atmos. Chem. Phys., 2015, 15(8):4399-4981.

  • 加载中
计量
  • PDF下载量:  20
  • 文章访问数:  849
  • HTML全文浏览量:  97
文章相关
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-04-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章