集成式微流控液滴数字化等温扩增用于尿路感染细菌快速检测

邹晶晶 黎柱均 刘云帆 欧阳秀酝 王羽 蔡东洋 何小维 刘大渔

引用本文: 邹晶晶, 黎柱均, 刘云帆, 欧阳秀酝, 王羽, 蔡东洋, 何小维, 刘大渔. 集成式微流控液滴数字化等温扩增用于尿路感染细菌快速检测[J]. 分析化学, 2022, 50(8): 1158-1167,1187. doi: 10.19756/j.issn.0253-3820.221085 shu
Citation:  ZOU Jing-Jing,  LI Zhu-Jun,  LIU Yun-Fan,  OUYANG Xiu-Yun,  WANG Yu,  CAI Dong-Yang,  HE Xiao-Wei,  LIU Da-Yu. Integrated Microfluidic Droplet Digital Isothermal Amplification Enabled Rapid Detection of Urinary Tract Infection Bacteria[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1158-1167,1187. doi: 10.19756/j.issn.0253-3820.221085 shu

集成式微流控液滴数字化等温扩增用于尿路感染细菌快速检测

    通讯作者: 何小维,E-mail:fexwhe@scut.edu.cn
  • 基金项目:

    中国博士后科学基金项目(Nos.2020M682663, 2021M690780)、 广东省自然科学基金项目(Nos.2020A1515010935, 2020A1515010754, 2020A1515110853, 2021A1515010182)、 广州市第一人民医院红棉计划项目(No.PT81871726)和广东省即时检测(POCT)企业重点实验室项目(No.2021B1212050016)资助。

摘要: 数字化核酸分析技术具有不依赖标准品的绝对定量分析能力,因而有利于实现病原分子的快速诊断。现有的数字化核酸分析方法通常采用离线式分析,操作繁琐且耗时较长,难以满足医疗资源有限情况下的检测需求。本研究建立了一种集成式微流控液滴数字化等温扩增方法。采用的微流控芯片集成了序列液滴核酸提取、负压驱动液滴生成和液滴环介导等温扩增(LAMP)功能,可采用集成化方式在1.5 h内完成细菌核酸数字化分析。此微流控芯片对大肠埃希氏菌的核酸提取效率为93.68%±32.38%;使用注射器负压驱动可在4 min内生成约20000个液滴,液滴体积的相对标准偏差(RSD)小于10%;液滴数字化LAMP检测动态范围跨越4个数量级(2.36×104~1.71×107 CFU/mL)。利用本方法检测尿路感染临床标本(n=13)中的大肠埃希菌,与传统定量培养方法结果相比较,本方法的检测灵敏度和特异性均为100%(Kappa=1,p<0.01)。本方法具有操作简便、定量分析准确的优点,为病原体的现场快速检测提供了一种有力的工具。

English


    1. [1]

      OZTURK R, MURT A. World J. Urol., 2020, 38(11):2669-2679.OZTURK R, MURT A. World J. Urol., 2020, 38(11):2669-2679.

    2. [2]

      FLORES-MIRELES A L, WALKER J N, CAPARON M, HULTGREN S J. Nat. Rev. Microbiol., 2015, 13(5):269-284.FLORES-MIRELES A L, WALKER J N, CAPARON M, HULTGREN S J. Nat. Rev. Microbiol., 2015, 13(5):269-284.

    3. [3]

      CHAND K S, KAPOOR P. Homeopathy, 2020, 109(2):97-106.CHAND K S, KAPOOR P. Homeopathy, 2020, 109(2):97-106.

    4. [4]

      PRICE T K, DUNE T, HILT E E, THOMAS-WHITE K J, KLIETHERMES S, BRINCAT C, BRUBAKER L, WOLFE A J, MUELLER E R, SCHRECKENBERGER P C. J. Clin. Microbiol., 2016, 54(5):1216-1222.PRICE T K, DUNE T, HILT E E, THOMAS-WHITE K J, KLIETHERMES S, BRINCAT C, BRUBAKER L, WOLFE A J, MUELLER E R, SCHRECKENBERGER P C. J. Clin. Microbiol., 2016, 54(5):1216-1222.

    5. [5]

      IPE D S, HORTON E, ULETT G C. Front. Cell. Infect. Microbiol., 2016, 6:14.IPE D S, HORTON E, ULETT G C. Front. Cell. Infect. Microbiol., 2016, 6:14.

    6. [6]

      CRAW P, BALACHANDRAN W. Lab Chip, 2012, 12(14):2469-2486.CRAW P, BALACHANDRAN W. Lab Chip, 2012, 12(14):2469-2486.

    7. [7]

      TRINH T N D, LEE N Y. Lab Chip, 2018, 18(16):2369-2377.TRINH T N D, LEE N Y. Lab Chip, 2018, 18(16):2369-2377.

    8. [8]

      KAYMAZ S V, ERGENC A F, AYTEKIN A O, LUCAS S J, ELITAS M. Biotechnol. Bioeng., 2022, 119(3):994-1003.KAYMAZ S V, ERGENC A F, AYTEKIN A O, LUCAS S J, ELITAS M. Biotechnol. Bioeng., 2022, 119(3):994-1003.

    9. [9]

      XIANG X, SHANG Y, ZHANG J, DING Y, WU Q. TrAC, Trends Anal. Chem., 2022, 149:116568.XIANG X, SHANG Y, ZHANG J, DING Y, WU Q. TrAC, Trends Anal. Chem., 2022, 149:116568.

    10. [10]

      BASU A S. SLAS Technol., 2017, 22(4):369-386.BASU A S. SLAS Technol., 2017, 22(4):369-386.

    11. [11]

      YEH E C, FU C C, HU L, THAKUR R, FENG J, LEE L P. Sci. Adv., 2017, 3(3):e1501645.YEH E C, FU C C, HU L, THAKUR R, FENG J, LEE L P. Sci. Adv., 2017, 3(3):e1501645.

    12. [12]

      RANE T D, CHEN L, ZEC H C, WANG T H. Lab Chip, 2015, 15(3):776-782.RANE T D, CHEN L, ZEC H C, WANG T H. Lab Chip, 2015, 15(3):776-782.

    13. [13]

      LIN Bing-Cheng, QIN Jian-Hua. Graphic Laboratory on a Microfluidic Chip. Beijing:Science Press, 2008:473.林炳承,秦建华.图解微流控芯片实验室.北京:科学出版社, 2008:473.

    14. [14]

      GENG Z, LI S, ZHU L, CHENG Z, JIN M, LIU B, GUO Y, LIU P. Anal. Chem., 2020, 92(10):7240-7248.GENG Z, LI S, ZHU L, CHENG Z, JIN M, LIU B, GUO Y, LIU P. Anal. Chem., 2020, 92(10):7240-7248.

    15. [15]

      YIN J, ZOU Z, HU Z, ZHANG S, ZHANG F, WANG B, LV S, MU Y. Lab Chip, 2020, 20(5):979-986.YIN J, ZOU Z, HU Z, ZHANG S, ZHANG F, WANG B, LV S, MU Y. Lab Chip, 2020, 20(5):979-986.

    16. [16]

      SHU B, LI Z, YANG X, XIAO F, LIN D, LEI X, XU B, LIU D. Chem. Commun., 2018, 54(18):2232-2235.SHU B, LI Z, YANG X, XIAO F, LIN D, LEI X, XU B, LIU D. Chem. Commun., 2018, 54(18):2232-2235.

    17. [17]

      SHU B, LIN L, WU B, HUANG E, WANG Y, LI Z, HE H, LEI X, XU B, LIU D. Biosens. Bioelectron., 2021, 181:113145.SHU B, LIN L, WU B, HUANG E, WANG Y, LI Z, HE H, LEI X, XU B, LIU D. Biosens. Bioelectron., 2021, 181:113145.

    18. [18]

      HE Hao-Yan, HUANG En-Qi, LI Zhu-Jun, SHU Bo-Wen, XU Bang-Lao, LIU Da-Yu. Chin. J. Anal. Chem., 2020, 48(7):855-862.何浩延,黄恩奇,黎柱均,舒博文,徐邦牢,刘大渔.分析化学, 2020, 48(7):855-862.

    19. [19]

      HILL J, BERIWAL S, CHANDRA I, PAUL V K, KAPIL A, SINGH T, WADOWSKY R M, SINGH V, GOYAL A, JAHNUKAINEN T, JOHNSON J R, TARR P I, VATS A. J. Clin. Microbiol., 2008, 46(8):2800-2804.HILL J, BERIWAL S, CHANDRA I, PAUL V K, KAPIL A, SINGH T, WADOWSKY R M, SINGH V, GOYAL A, JAHNUKAINEN T, JOHNSON J R, TARR P I, VATS A. J. Clin. Microbiol., 2008, 46(8):2800-2804.

    20. [20]

      HU F, LI J, ZHANG Z M, LI M, ZHAO S H, LI Z P, PENG N C. Anal. Chem., 2020, 92(2):2258-2265.HU F, LI J, ZHANG Z M, LI M, ZHAO S H, LI Z P, PENG N C. Anal. Chem., 2020, 92(2):2258-2265.

    21. [21]

      XU B L, DU Y, LIN J Q, QI M Y, SHU B W, WEN X X, LIANG G T, CHEN B, LIU D Y. Anal. Chem., 2016, 88(23):11593-11600.XU B L, DU Y, LIN J Q, QI M Y, SHU B W, WEN X X, LIANG G T, CHEN B, LIU D Y. Anal. Chem., 2016, 88(23):11593-11600.

    22. [22]

      REN K N, ZHOU J H, WU H K. Acc. Chem. Res., 2013, 46(11):2396-2406.REN K N, ZHOU J H, WU H K. Acc. Chem. Res., 2013, 46(11):2396-2406.

    23. [23]

      YUAN H, CHAO Y, SHUM H C. Small, 2020, 16(9):e1904469.YUAN H, CHAO Y, SHUM H C. Small, 2020, 16(9):e1904469.

    24. [24]

      PENG Nian-Cai. Digital PCR:Theory, Technology and Application. Beijing:Science Press, 2017:190.彭年才.数字PCR-原理、技术及应用.北京:科学出版社, 2017:190.

    25. [25]

      WITTE A K, MESTER P, FISTER S, WITTE M, SCHODER D, ROSSMANITH P. PLoS One, 2016, 11(12):e0168179.WITTE A K, MESTER P, FISTER S, WITTE M, SCHODER D, ROSSMANITH P. PLoS One, 2016, 11(12):e0168179.

    26. [26]

      SEYRIG G, STEDTFELD R D, TOURLOUSSE D M, AHMAD F, TOWERY K, CUPPLES A M, TIEDJE J M, HASHSHAM S A. J. Microbiol. Methods, 2015, 119:223-227.SEYRIG G, STEDTFELD R D, TOURLOUSSE D M, AHMAD F, TOWERY K, CUPPLES A M, TIEDJE J M, HASHSHAM S A. J. Microbiol. Methods, 2015, 119:223-227.

    27. [27]

      HOLST-JENSEN A, CRESPO T, SIMPLÍCIO A, RICHL P, WELSCHE M, DOBNIK D, DREO T. Minimum Performance Parameters (MPPs) and Associated Acceptance Values (AAVs) for Nucleic Acid Amplification Methods (DECATHLON deliverable report D6.1):https://www.researchgate.net/publication/277943953, 2014:18.HOLST-JENSEN A, CRESPO T, SIMPLÍCIO A, RICHL P, WELSCHE M, DOBNIK D, DREO T. Minimum Performance Parameters (MPPs) and Associated Acceptance Values (AAVs) for Nucleic Acid Amplification Methods (DECATHLON deliverable report D6.1):https://www.researchgate.net/publication/277943953, 2014:18.

    28. [28]

      RICCHI M, BERTASIO C, BONIOTTI M B, VICARI N, RUSSO S, TILOLA M, BELLOTTI M A, BERTASI B. Front. Microbiol., 2017, 8:1174.RICCHI M, BERTASIO C, BONIOTTI M B, VICARI N, RUSSO S, TILOLA M, BELLOTTI M A, BERTASI B. Front. Microbiol., 2017, 8:1174.

    29. [29]

      WS/T 489-2016. Laboratory Diagnosis of Urinary Tract Infections. Industrial Hygiene Standards of the People's Republic of China.尿路感染临床微生物实验室诊断.中华人民共和国卫生行业标准. WS/T 489-2016.

  • 加载中
计量
  • PDF下载量:  21
  • 文章访问数:  979
  • HTML全文浏览量:  178
文章相关
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-05-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章