Citation: ZOU Jing-Jing,  LI Zhu-Jun,  LIU Yun-Fan,  OUYANG Xiu-Yun,  WANG Yu,  CAI Dong-Yang,  HE Xiao-Wei,  LIU Da-Yu. Integrated Microfluidic Droplet Digital Isothermal Amplification Enabled Rapid Detection of Urinary Tract Infection Bacteria[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1158-1167,1187. doi: 10.19756/j.issn.0253-3820.221085 shu

Integrated Microfluidic Droplet Digital Isothermal Amplification Enabled Rapid Detection of Urinary Tract Infection Bacteria

  • Corresponding author: HE Xiao-Wei, fexwhe@scut.edu.cn
  • Received Date: 21 February 2022
    Revised Date: 10 May 2022

    Fund Project: Supported by the China Postdoctoral Science Foundation (Nos.2020M682663, 2021M690780), the Natural Science Foundation of Guangdong Province,China (Nos.2020A1515010935, 2020A1515010754, 2020A1515110853, 2021A1515010182), the Science Foundation of Guangzhou First People's Hospital (No.PT81871726) and the Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT) (No.2021B1212050016).

  • Digital nucleic acid analysis is a favorable tool for rapid molecular detection of pathogens due to its absolute quantification capability without the necessity of standard curves. However, current digital nucleic acid analysis platforms commonly perform the workflow with discrete facilities, which complicates the operation process and lengthens the turnaround time, therefore restricting its adoption in resource-limited settings. To address this issue, an integrated microfluidic droplet digital isothermal amplification system was developed in this work. This system integrated sequential droplets-based nucleic acid extraction unit, syringe-vacuum actuated droplet generation unit, and droplet digital loop-mediated isothermal amplification (LAMP) unit, achieving digital analysis of bacterial nucleic acid within 1.5 h in an integrated manner. The nucleic acid extraction unit could complete E.coli genomic DNA extraction with the efficiency of 93.68%±32.38%, the droplet generation unit could produce 20000 droplets in 4 min with the relative standard deviation (RSD) less than 10%. The LAMP reaction could be performed with a linear dynamic range of 4 orders of magnitude (2.36×104-1.71×1 07 CFU/mL). Compared to traditional culture method, the results obtained from analysis of E.coli in UTI clinical samples (n=13) showed that both the detection sensitivity and specificity of this digital nucleic acid analysis method were 100% (Kappa=1, p<0.01). With the advantages of accurate quantification and ease of operation, this integrated microfluidic droplet digital isothermal amplification system was expected to be a favorable tool for rapid point-of-care detection of pathogens in resource-limited settings.
  • 加载中
    1. [1]

      OZTURK R, MURT A. World J. Urol., 2020, 38(11):2669-2679.

    2. [2]

      FLORES-MIRELES A L, WALKER J N, CAPARON M, HULTGREN S J. Nat. Rev. Microbiol., 2015, 13(5):269-284.

    3. [3]

      CHAND K S, KAPOOR P. Homeopathy, 2020, 109(2):97-106.

    4. [4]

      PRICE T K, DUNE T, HILT E E, THOMAS-WHITE K J, KLIETHERMES S, BRINCAT C, BRUBAKER L, WOLFE A J, MUELLER E R, SCHRECKENBERGER P C. J. Clin. Microbiol., 2016, 54(5):1216-1222.

    5. [5]

      IPE D S, HORTON E, ULETT G C. Front. Cell. Infect. Microbiol., 2016, 6:14.

    6. [6]

      CRAW P, BALACHANDRAN W. Lab Chip, 2012, 12(14):2469-2486.

    7. [7]

      TRINH T N D, LEE N Y. Lab Chip, 2018, 18(16):2369-2377.

    8. [8]

      KAYMAZ S V, ERGENC A F, AYTEKIN A O, LUCAS S J, ELITAS M. Biotechnol. Bioeng., 2022, 119(3):994-1003.

    9. [9]

      XIANG X, SHANG Y, ZHANG J, DING Y, WU Q. TrAC, Trends Anal. Chem., 2022, 149:116568.

    10. [10]

      BASU A S. SLAS Technol., 2017, 22(4):369-386.

    11. [11]

      YEH E C, FU C C, HU L, THAKUR R, FENG J, LEE L P. Sci. Adv., 2017, 3(3):e1501645.

    12. [12]

      RANE T D, CHEN L, ZEC H C, WANG T H. Lab Chip, 2015, 15(3):776-782.

    13. [13]

    14. [14]

      GENG Z, LI S, ZHU L, CHENG Z, JIN M, LIU B, GUO Y, LIU P. Anal. Chem., 2020, 92(10):7240-7248.

    15. [15]

      YIN J, ZOU Z, HU Z, ZHANG S, ZHANG F, WANG B, LV S, MU Y. Lab Chip, 2020, 20(5):979-986.

    16. [16]

      SHU B, LI Z, YANG X, XIAO F, LIN D, LEI X, XU B, LIU D. Chem. Commun., 2018, 54(18):2232-2235.

    17. [17]

      SHU B, LIN L, WU B, HUANG E, WANG Y, LI Z, HE H, LEI X, XU B, LIU D. Biosens. Bioelectron., 2021, 181:113145.

    18. [18]

    19. [19]

      HILL J, BERIWAL S, CHANDRA I, PAUL V K, KAPIL A, SINGH T, WADOWSKY R M, SINGH V, GOYAL A, JAHNUKAINEN T, JOHNSON J R, TARR P I, VATS A. J. Clin. Microbiol., 2008, 46(8):2800-2804.

    20. [20]

      HU F, LI J, ZHANG Z M, LI M, ZHAO S H, LI Z P, PENG N C. Anal. Chem., 2020, 92(2):2258-2265.

    21. [21]

      XU B L, DU Y, LIN J Q, QI M Y, SHU B W, WEN X X, LIANG G T, CHEN B, LIU D Y. Anal. Chem., 2016, 88(23):11593-11600.

    22. [22]

      REN K N, ZHOU J H, WU H K. Acc. Chem. Res., 2013, 46(11):2396-2406.

    23. [23]

      YUAN H, CHAO Y, SHUM H C. Small, 2020, 16(9):e1904469.

    24. [24]

    25. [25]

      WITTE A K, MESTER P, FISTER S, WITTE M, SCHODER D, ROSSMANITH P. PLoS One, 2016, 11(12):e0168179.

    26. [26]

      SEYRIG G, STEDTFELD R D, TOURLOUSSE D M, AHMAD F, TOWERY K, CUPPLES A M, TIEDJE J M, HASHSHAM S A. J. Microbiol. Methods, 2015, 119:223-227.

    27. [27]

      HOLST-JENSEN A, CRESPO T, SIMPLÍCIO A, RICHL P, WELSCHE M, DOBNIK D, DREO T. Minimum Performance Parameters (MPPs) and Associated Acceptance Values (AAVs) for Nucleic Acid Amplification Methods (DECATHLON deliverable report D6.1):https://www.researchgate.net/publication/277943953, 2014:18.

    28. [28]

      RICCHI M, BERTASIO C, BONIOTTI M B, VICARI N, RUSSO S, TILOLA M, BELLOTTI M A, BERTASI B. Front. Microbiol., 2017, 8:1174.

    29. [29]

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    3. [3]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    4. [4]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    5. [5]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    6. [6]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    7. [7]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    8. [8]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Xiaoyan Wang Yan Qi Lin Tang Shuwen Wang Huiling Wen Hongtao Gao . Improvement of the Quality Construction of Basic Chemistry Experimental Teaching Center under the Background of Education Digitization. University Chemistry, 2024, 39(7): 40-48. doi: 10.12461/PKU.DXHX202404124

    11. [11]

      Yan Su Yuzhen Pan Fuping Tian Xiuyun Wang Tieqi Xu Yongce Zhang Miao Cui Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001

    12. [12]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    13. [13]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    14. [14]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    15. [15]

      Xianjiao Meng Yujiao Ma Wang Li Xi Zhao Yiming Wang Fugui Wang Yongpo Zhang Jinzhong Zhao . Experimental Teaching Design of Extracting Capsanthin from Chili Peppers: A Digital Perspective. University Chemistry, 2025, 40(11): 233-240. doi: 10.12461/PKU.DXHX202412118

    16. [16]

      Yunying Wu Zhilan Mo Xue Zhou Yu Yuan Yunfei Ma Jing Chen Gang Tang . Empowering the Digital Transformation of Organic Chemistry Experiments with Sensing Technology: A Case of Atmospheric Distillation, Vacuum Distillation and Fractionation. University Chemistry, 2025, 40(11): 310-317. doi: 10.12461/PKU.DXHX202503078

    17. [17]

      Bin Wang Chuanli Qin Naiying Fan Zhibin Li Zhibiao Zhu Jiancong Liu Shaoping Sun . Construction and Practice of Digital Platform and Teaching Resources of Chemistry Experimental Teaching Center: A Case Study of Provincial Demonstration Center for Experimental Chemistry Education (Heilongjiang University). University Chemistry, 2024, 39(7): 193-199. doi: 10.12461/PKU.DXHX202405116

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(22)
  • Abstract views(1152)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return