基于真空紫外光电离质谱的氯原子引发诺蒎酮氧化反应研究

胡荣荣 马子吉 岳浩 林晓晓 温作赢 张为俊 顾学军 唐小锋

引用本文: 胡荣荣, 马子吉, 岳浩, 林晓晓, 温作赢, 张为俊, 顾学军, 唐小锋. 基于真空紫外光电离质谱的氯原子引发诺蒎酮氧化反应研究[J]. 分析化学, 2022, 50(6): 948-956. doi: 10.19756/j.issn.0253-3820.221081 shu
Citation:  HU Rong-Rong,  MA Zi-Ji,  YUE Hao,  LIN Xiao-Xiao,  WEN Zuo-Ying,  ZHANG Wei-Jun,  GU Xue-Jun,  TANG Xiao-Feng. Investigation of Chlorine-initiated Oxidation Reactions of Nopinone by Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(6): 948-956. doi: 10.19756/j.issn.0253-3820.221081 shu

基于真空紫外光电离质谱的氯原子引发诺蒎酮氧化反应研究

    通讯作者: 林晓晓,E-mail:lxx1989@aiofm.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.42075113,42120104007,91961123)资助。

摘要: 采用微波放电流动管反应器模拟大气中氯原子(Cl)引发的诺蒎酮(C9H14O)氧化反应,结合自行研制的真空紫外光电离飞行时间质谱仪,在线检测获得反应中的关键物种,包含反应物、自由基和产物,并开展其反应动力学研究,通过比较关键物种的动力学实验与模拟计算结果,探讨了反应中关键物种的反应路径。结果表明,Cl原子和诺蒎酮分子之间的反应经夺氢通道生成自由基C9H13O,产生的自由基C9H13O与O2分子反应主要生成过氧自由基C9H13OO2,并且新生成的C9H13OO2在无NO或NO2条件下进一步与HO2自由基反应生成氢过氧化物C9H13OO2H,以及与自身发生双分子反应生成自由基C9H13OO、羰基化合物C9H12O2和C9H13OOH。本研究通过实验研究和模拟计算揭示了Cl原子引发的诺蒎酮大气氧化反应机理。

English


    1. [1]

      DAVIS M E, TAPSCOTT C, STEVENS P S. Int. J. Chem. Kinet., 2005, 37(9):522-531.DAVIS M E, TAPSCOTT C, STEVENS P S. Int. J. Chem. Kinet., 2005, 37(9):522-531.

    2. [2]

      JAOUI M, KAMENS R. J. Atoms. Chem., 2003, 44(3):259-297.JAOUI M, KAMENS R. J. Atoms. Chem., 2003, 44(3):259-297.

    3. [3]

      KAMINSKI M, FUCHS H, ACIR I H, BOHN B, BRAUERS T, DORN H P, HÄSELER R, HOFZUMAHAUS A, LI X, LUTZ A, NEHR S, ROHRER F, TILLMANN R, VEREECKEN L, WEGENER R. WAHNER A. Atmos.Chem. Phys., 2017, 17(11):6631-6650.KAMINSKI M, FUCHS H, ACIR I H, BOHN B, BRAUERS T, DORN H P, HÄSELER R, HOFZUMAHAUS A, LI X, LUTZ A, NEHR S, ROHRER F, TILLMANN R, VEREECKEN L, WEGENER R. WAHNER A. Atmos.Chem. Phys., 2017, 17(11):6631-6650.

    4. [4]

      SATO K, JIA T, TANABE K, MORINO Y, KAJII Y, IMAMURA T. Atmos. Environ., 2016, 130:127-135.SATO K, JIA T, TANABE K, MORINO Y, KAJII Y, IMAMURA T. Atmos. Environ., 2016, 130:127-135.

    5. [5]

      ZHANG Qiang-Ling, ZOU Xue, LIANG Qu, ZHANG Ya-Ting, YI Ming-Jian, WANG Hong-Mei, HUANG Chao-Qun, SHEN Chen-Yin, CHU Yan-Nan. Chin. J. Anal. Chem., 2018, 46(4):471-478.张强领, 邹雪, 梁渠, 张亚婷, 易明建, 王鸿梅, 黄超群, 沈成银, 储焰南.分析化学, 2018, 46(4):471-478.

    6. [6]

      ZHUANG Yi, CHENG Chun-Lei, WENG Xiang, CHEN Jin-Sheng, LYU Xiao-Pu, LI Mei, ZHOU Zhen. Chin. J.Anal. Chem., 2019, 47(6):890-898.庄壹, 成春雷, 翁翔, 陈进生, 吕效谱, 李梅, 周振.分析化学, 2019, 47(6):890-898.

    7. [7]

      LEWIS P J, BENNETT K A, HARVEY J N. Phys. Chem. Chem. Phys., 2005, 7(8):1643-1649.LEWIS P J, BENNETT K A, HARVEY J N. Phys. Chem. Chem. Phys., 2005, 7(8):1643-1649.

    8. [8]

      CALOGIROU A, JENSEN N R, NIELSEN C J, KOTZIAS D, HJORTH J. Environ. Sci. Technol., 1999, 33(3):453-460.CALOGIROU A, JENSEN N R, NIELSEN C J, KOTZIAS D, HJORTH J. Environ. Sci. Technol., 1999, 33(3):453-460.

    9. [9]

      BRETON M L, HALLQUISTÅM, PATHAK R K, SIMPSON D, WANG Y, JOHANSSON J, ZHENG J, YANG Y, SHANG D, WANG H, LIU Q, CHAN C, WANG T, BANNAN T J, PRIESTLEY M, PERCIVAL C J, SHALLCROSS D E, LU K, GUO S, HU M, HALLQUIST M. Atmos. Chem. Phys., 2018, 18(17):13013-13030.BRETON M L, HALLQUISTÅM, PATHAK R K, SIMPSON D, WANG Y, JOHANSSON J, ZHENG J, YANG Y, SHANG D, WANG H, LIU Q, CHAN C, WANG T, BANNAN T J, PRIESTLEY M, PERCIVAL C J, SHALLCROSS D E, LU K, GUO S, HU M, HALLQUIST M. Atmos. Chem. Phys., 2018, 18(17):13013-13030.

    10. [10]

      THORNTON J A, KERCHER J P, RIEDEL T P, WAGNER N L, COZIC J, HOLLOWAY J S, DUBÉW P, WOLFE G M, QUINN P K, MIDDLEBROOK A M, ALEXANDER B, BROWN S S. Nature, 2010, 464(7286):271-274.THORNTON J A, KERCHER J P, RIEDEL T P, WAGNER N L, COZIC J, HOLLOWAY J S, DUBÉW P, WOLFE G M, QUINN P K, MIDDLEBROOK A M, ALEXANDER B, BROWN S S. Nature, 2010, 464(7286):271-274.

    11. [11]

      LIU X, QU H, HUEY L G, WANG Y, SJOSTEDT S, ZENG L, LU K, WU Y, HU M, SHAO M, ZHU T, ZHANG Y.Environ. Sci. Technol., 2017, 51(17):9588-9595.LIU X, QU H, HUEY L G, WANG Y, SJOSTEDT S, ZENG L, LU K, WU Y, HU M, SHAO M, ZHU T, ZHANG Y.Environ. Sci. Technol., 2017, 51(17):9588-9595.

    12. [12]

      SUN Y, ZHANG Q, HU J, CHEN J, WANG W. Chemosphere, 2015, 119:626-633.SUN Y, ZHANG Q, HU J, CHEN J, WANG W. Chemosphere, 2015, 119:626-633.

    13. [13]

      MA F, DING Z, ELM J, XIE H B, YU Q, LIU C, LI C, FU Z, ZHANG L, CHEN J. Environ. Sci. Technol., 2018, 52(17):9801-9809.MA F, DING Z, ELM J, XIE H B, YU Q, LIU C, LI C, FU Z, ZHANG L, CHEN J. Environ. Sci. Technol., 2018, 52(17):9801-9809.

    14. [14]

      MELLOUKI A, BRAS G L. Mater. Sci. Forum., 1999, 301:47-68.MELLOUKI A, BRAS G L. Mater. Sci. Forum., 1999, 301:47-68.

    15. [15]

      TYNDALL G S, COX R A, GRANIER C, LESCLAUX R, MOORTGAT G K, PILLING M J, RAVISHANKARA A R, WALLINGTON T J. J. Geophys. Res. Atmos., 2001, 106(D11):12157-12182.TYNDALL G S, COX R A, GRANIER C, LESCLAUX R, MOORTGAT G K, PILLING M J, RAVISHANKARA A R, WALLINGTON T J. J. Geophys. Res. Atmos., 2001, 106(D11):12157-12182.

    16. [16]

      LI Qing-Yun, HUA Lei, HE Meng-Qi, LI Jia, JIANG Ji-Chun, HOU Ke-Yong, TIAN Di, LI Hai-Yang. Chin. J.Anal. Chem., 2019, 47(4):541-549.李庆运, 花磊, 何梦琦, 李佳, 蒋吉春, 侯可勇, 田地, 李海洋.分析化学, 2019, 47(4):541-549.

    17. [17]

      SUN Wan-Qi, ZHANG Yong, FANG Shuang-Xi. Chin. J. Anal. Chem., 2019, 47(7):976-984.孙万启, 张勇, 方双喜.分析化学, 2019, 47(7):976-984.

    18. [18]

      WEN Z Y, TANG X F, WANG C C, FITTSCHEN C, WANG T, ZHANG C H, YANG J Z, PAN Y, LIU F Y, ZHANG W J. Int. J. Chem. Kinet., 2019, 51(3):178-188.WEN Z Y, TANG X F, WANG C C, FITTSCHEN C, WANG T, ZHANG C H, YANG J Z, PAN Y, LIU F Y, ZHANG W J. Int. J. Chem. Kinet., 2019, 51(3):178-188.

    19. [19]

      WANG Tao, TANG Xiao-Feng, WEN Zuo-Ying, ZHANG Cui-Hong, ZHANG Wei-Jun. Chin. J. Anal. Chem., 2020, 48(1):28-33.王涛, 唐小锋, 温作赢, 张翠红, 张为俊.分析化学, 2020, 48(1):28-33.

    20. [20]

      BOSSOLASCO A, FARAGÓE P, SCHOEMAECKER C, FITTSCHEN C. Chem. Phys. Lett., 2014593:7-13.BOSSOLASCO A, FARAGÓE P, SCHOEMAECKER C, FITTSCHEN C. Chem. Phys. Lett., 2014593:7-13.

    21. [21]

      ZHANG C, SHAMAS M, ASSALI M, TANG X, ZHANG W, PILLIER L, SCHOEMAECKER C, FITTSCHEN C.Photonics, 2021, 8(8):296.ZHANG C, SHAMAS M, ASSALI M, TANG X, ZHANG W, PILLIER L, SCHOEMAECKER C, FITTSCHEN C.Photonics, 2021, 8(8):296.

    22. [22]

      NEEMAN E M, AVILÉS-MORENO J R, HUET T R. Phys. Chem. Chem. Phys., 2017, 19(21):13819-13827.NEEMAN E M, AVILÉS-MORENO J R, HUET T R. Phys. Chem. Chem. Phys., 2017, 19(21):13819-13827.

    23. [23]

      CAO M, CHEN J, FANG W, LI Y, GE S, SHAN X, LIU F, ZHAO Y, WANG Z, SHENG L. Eur. J. Mass Spectrom., 2014, 20(6):419-468.CAO M, CHEN J, FANG W, LI Y, GE S, SHAN X, LIU F, ZHAO Y, WANG Z, SHENG L. Eur. J. Mass Spectrom., 2014, 20(6):419-468.

    24. [24]

      DESAIN J D, KLIPPENSTEIN S J, MILLER J A, TAATJES C A. J. Phys. Chem. A, 2003, 107(22):4415-4427.DESAIN J D, KLIPPENSTEIN S J, MILLER J A, TAATJES C A. J. Phys. Chem. A, 2003, 107(22):4415-4427.

    25. [25]

      MELONI G, ZOU P, KLIPPENSTEIN S J, AHMED M, LEONE S R, TAATJES C A, OSBORN D L. J. Am. Chem.Soc., 2006, 128(41):13559-13567.MELONI G, ZOU P, KLIPPENSTEIN S J, AHMED M, LEONE S R, TAATJES C A, OSBORN D L. J. Am. Chem.Soc., 2006, 128(41):13559-13567.

    26. [26]

      TANG X F, LIN X X, GARCIA G A, LOISON J C, GOUID Z, ABDALLAH H H, FITTSCHEN C, HOCHLAF M, GU X J, ZHANG W J, NAHON L. Chem. Commun., 2020, 56(99):15525-15528.TANG X F, LIN X X, GARCIA G A, LOISON J C, GOUID Z, ABDALLAH H H, FITTSCHEN C, HOCHLAF M, GU X J, ZHANG W J, NAHON L. Chem. Commun., 2020, 56(99):15525-15528.

    27. [27]

      WEN Z Y, LIN X X, TANG X F, LONG B, WANG C C, ZHANG C H, FITTSCHEN C, YANG J Z, GU X J, ZHANG W J.Phys. Chem. Chem. Phys., 2021, 23(38):22096-22102.WEN Z Y, LIN X X, TANG X F, LONG B, WANG C C, ZHANG C H, FITTSCHEN C, YANG J Z, GU X J, ZHANG W J.Phys. Chem. Chem. Phys., 2021, 23(38):22096-22102.

    28. [28]

      MELONI G, SELBY T M, GOULAY F, STEPHEN R L, DAVID L O, CRAIG A T. J. Am. Chem. Soc., 2007, 129(45):14019-14025.MELONI G, SELBY T M, GOULAY F, STEPHEN R L, DAVID L O, CRAIG A T. J. Am. Chem. Soc., 2007, 129(45):14019-14025.

    29. [29]

      JENKIN M E, YOUNG J C, RICKARD A R. Atmos. Chem. Phys., 2015, 15(20):11433-11459.JENKIN M E, YOUNG J C, RICKARD A R. Atmos. Chem. Phys., 2015, 15(20):11433-11459.

    30. [30]

      MARICQ M M, SZENTE J J, KAISER E W. J. Phys. Chem., 1993, 97(30):7970-7977.MARICQ M M, SZENTE J J, KAISER E W. J. Phys. Chem., 1993, 97(30):7970-7977.

    31. [31]

      ATKINSON R, BAULCH D L, COX R A, CROWLEY J N, HAMPSON R F, HYNES R G, JENKIN M E, ROSSI M J, TROE J. Atmos. Chem. Phys., 2004, 4(6):1461-1738.ATKINSON R, BAULCH D L, COX R A, CROWLEY J N, HAMPSON R F, HYNES R G, JENKIN M E, ROSSI M J, TROE J. Atmos. Chem. Phys., 2004, 4(6):1461-1738.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  751
  • HTML全文浏览量:  160
文章相关
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-04-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章