Citation: GUO Shang,  CHEN Guang-Shi,  ZHOU Jing,  LIANG Wen-Yao,  TAN Jian-Hua,  PENG Xian-Zhi. Non-target Screening of Plastic Additives Leaching under Artificial Biodigestive Condition Using Ultra-High Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1373-1383. doi: 10.19756/j.issn.0253-3820.221053 shu

Non-target Screening of Plastic Additives Leaching under Artificial Biodigestive Condition Using Ultra-High Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap Mass Spectrometry

  • Corresponding author: PENG Xian-Zhi, pengx@gig.ac.cn
  • Received Date: 26 January 2022
    Revised Date: 16 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.4207070014, 41877365).

  • A non-target screening method based on ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was established for screening and identification of plastic additives in plastic products. Chromatographic separation was performed on a Hypersil GOLD C18 chromatographic column. The MS data were obtained under MS/dd-MS2 scan mode with electrospray ionization source (HESI) in both positive and negative ion modes. A MS data base including 31 kinds of plastic additives and a suspect list including more than 6028 kinds of plastic additives were established. The non-target screen workflow including UHPLC-HRMS method, MS data analysis and compound identification were optimized. According to the matching level of precursor ion (MS), fragment ions (MS2) and retention time (RT) with data bases and/or silico fragment, the compounds screened here could be categorized based on confidence levels from L1 to L4. A total of 1944 compounds in the extract of PVC sheath of cords were screened and identified by the developed non-target screening method, among which 4 compounds including diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), tris(2-chloroethyl) phosphate (TCEP) and bisphenol A (BPA) were identified as L1 confidence, 88 and 50 compounds were identified as L2 and L3 confidence (phthalates, amides, alkenoic acids, etc.). This method was further applied to primary investigation of plastic additives released from typical plastic products under the artificial biodigestive system. A total of 132 kinds of additives were identified. L1 compounds included DEHP, BPA, drometrizole (UVP) and triethyl phosphate (TEP), with release amount of 4.6 mg/g, 38.1 μg/g, 47.8 ng/g and 158.2 ng/g, respectively.
  • 加载中
    1. [1]

      CHIAIA-HERNÁNDEZ A C, GÜNTHARDT B F, FREY M P, HOLLENDER J. Environ. Sci. Technol., 2017, 51(21):12547-12556.

    2. [2]

      JABEEN K, SU L, LI J, YANG D, TONG C, MU J, SHI H. Environ. Pollut., 2017, 221:141-149.

    3. [3]

      FOSSI M C, PANTI C, BAINI M, LAVERS J L. Front. Mar. Sci., 2018, 5:173.

    4. [4]

      LI J, GREEN C, REYNOLDS A, SHI H, ROTCHELL J M. Environ. Pollut., 2018, 241:35-44.

    5. [5]

      BOYLE D, CATARINO A I, CLARK N J, HENRY T B. Environ. Pollut., 2020, 263(Pt A):114422.

    6. [6]

      MACKINTOSH C E, MALDONADO J, HONGWU J, HOOVER N, CHONG A, IKONOMOU M G, GOBAS F A P C. Environ. Sci. Technol., 2004, 38(7):2011-2020.

    7. [7]

      TANAKA K, VAN FRANEKER J A, DEGUCHI T, TAKADA H. Mar. Pollut. Bull., 2019, 145:36-41.

    8. [8]

      OEHLMANN J, SCHULTE-OEHLMANN U, KLOAS W, JAGNYTSCH O, LUTZ I, KUSK K O, WOLLENBERGER L, SANTOS E M, PAULL G C, VAN LOOK K J W, TYLER C R. Philos. Trans. R. Soc., B, 2009, 364(1526):2047-2062.

    9. [9]

      PU S Y, HAMID N, REN Y W, PEI D S. Chemosphere, 2020, 246:125808.

    10. [10]

      VAN DER VEEN I, DE BOER J. Chemosphere, 2012, 88(10):1119-1153.

    11. [11]

      TANAKA K, TAKADA H, YAMASHITA R, MIZUKAWA K, FUKUWAKA M A, WATANUKI Y. Environ. Sci. Technol., 2015, 49(19):11799-11807.

    12. [12]

      COFFIN S, HUANG G Y, LEE I, SCHLENK D. Environ. Sci. Technol., 2019, 53(8):4588-4599.

    13. [13]

      HOLLENDER J, SCHYMANSKI E L, SINGER H P, FERGUSON P L. Environ. Sci. Technol., 2017, 51(20):11505-11512.

    14. [14]

      LARA-MARTIN P A, CHIAIA-HERNANDEZ A C, BIEL-MAESO M, BAENA-NOGUERAS R M, HOLLENDER J. Environ. Sci. Technol., 2020, 54(7):3996-4005.

    15. [15]

      TIAN Z, PETER K T, GIPE A D, ZHAO H, HOU F, WARK D A, KHANGAONKAR T, KOLODZIEJ E P, JAMES C A. Environ. Sci. Technol., 2019, 54(2):889-901.

    16. [16]

      HUYSMAN S, VAN MEULEBROEK L, JANSSENS O, VANRYCKEGHEM F, VAN LANGENHOVE H, DEMEESTERE K, VANHAECKE L. Anal. Chim. Acta, 2019, 1049:141-151.

    17. [17]

      ZIMMERMANN L, BARTOSOVA Z, BRAUN K, OEHLMANN J, VOLKER C, WAGNER M. Environ. Sci. Technol., 2021, 55(17):11814-11823.

    18. [18]

      GUO H, ZHENG X, RU S, LUO X, MAI B. J. Environ. Sci. (Beijing, China), 2019, 85(SI):200-207.

    19. [19]

      CHIAIA-HERNANDEZ A C, SCHYMANSKI E L, KUMAR P, SINGER H P, HOLLENDER J. Anal. Bioanal. Chem., 2014, 406(28):7323-7335.

    20. [20]

    21. [21]

      LI Y Q, YU N Y, DU L T, SHI W, YU H X, SONG M Y, WEI S. Environ. Sci. Technol., 2020, 54(6):3407-3416.

    22. [22]

      SCHYMANSKI E L, JEON J, GULDE R, FENNER K, RUFF M, SINGER H P, HOLLENDER J. Environ. Sci. Technol., 2014, 48(4):2097-2098.

    23. [23]

      DU B, LOFTON J M, PETER K T, GIPE A D, JAMES C A, MCINTYRE J K, SCHOLZ N L, BAKER J E, KOLODZIEJ E P. Environ. Sci.:Processes Impacts, 2017, 19(9):1185-1196.

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    5. [5]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    10. [10]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    12. [12]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    16. [16]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    19. [19]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    20. [20]

      Xipu He Wengui Duan Guishan Lin . Reform and Practice of Organic Chemistry Teaching for Non-Chemistry Major under the Four New Construction: Taking the Organic Chemistry Course Reform of Biological Science Major at Guangxi University as an Example. University Chemistry, 2025, 40(7): 42-47. doi: 10.12461/PKU.DXHX202408021

Metrics
  • PDF Downloads(14)
  • Abstract views(497)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return