Citation: HAN Xiao-Hong,  HAN Xi,  WANG Rong-Rong,  SHI Chun-Zhen. Metabolic Profiling Analysis of Formaldehyde Degrading Strain of XF-1 Using Gas Chromatography-Time of Flight-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1072-1082. doi: 10.19756/j.issn.0253-3820.221050 shu

Metabolic Profiling Analysis of Formaldehyde Degrading Strain of XF-1 Using Gas Chromatography-Time of Flight-Mass Spectrometry

  • Corresponding author: SHI Chun-Zhen, shichunzhen@btbu.edu.cn
  • Received Date: 25 January 2022
    Revised Date: 21 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.52170106) and the High-level Teacher in Beijing Municipal Universities in the Period of 13th Five-year Plan (No.CIT&TCD201904032).

  • Cooking oil fumes are widely concerned because of the complex composition and the hard-to-degrade characterization. One of the most important pollutants in cooking oil fumes is formaldehyde which is a hazard to human health. In this study, a strain of Bacillus amyloliticus XF-1 screened out in previous work was used for efficiently degrading formaldehyde from the condensate of cooking oil fumes. The previous study found that when formaldehyde was the only carbon source, the biodegradation rate was reduced owing to the inhibition effect to the strain. It was necessary to investigate the metabolic mechanism of strain XF-1 and to illustrate the reason for growth inhibition. The metabolic profiling of XF-1 with different carbon sources and under different culture time conditions was analyzed by gas chromatography-time of flight-mass spectrometry (GC-TOF-MS). The results showed that different carbon sources caused different metabolic profiles of XF-1. The metabolic process was delayed using formaldehyde as the carbon source. The concentrations of cystine, aspartic acid and glutamine were significantly changed, which showed that the cell growth and proliferation were inhibited. This work provided a reference for improving the biodegradation efficiency of cooking oil fumes in the future.
  • 加载中
    1. [1]

      MA Y S, DENG L J, MA P, WU Y, YANG X, XIAO F, DENG Q H. J. Hazard. Mater., 2021, 402:123455.

    2. [2]

      CAO J Y, DING R, WANG Y, CHEN D J, GUO D M, LIANG C M, FENG Z W, CHE Z. Environ. Toxicol. Pharmacol., 2013, 36(2):320-331.

    3. [3]

      ZHANG X Y, HE Y H, LIN Q H, HUANG L L, ZHANG Q W, XU Y Q. Mol. Cell Toxicol., 2020, 16(1):13-24.

    4. [4]

      CHEN H C, WU C F, CHONG I W, WU M T. BMC Public Health, 2018, 18:246.

    5. [5]

      CHEN T Y, FANG Y H, CHEN H L, CHANG C H, HUANG H, CHEN Y S, LIAO K M, WU H Y, CHANG G C, TSAI Y H, WANG C L, CHEN Y M, HUANG M S, SU W C, YANG P C, CHEN C J, HSIAO C F, HSUING C A. Sci. Rep., 2020, 10(1):6774.

    6. [6]

      XUE Y B, JIANG Y, JIN S, LI Y. OncoTargetsTher., 2016, 9:2987-2992.

    7. [7]

      PARKIN S L, WHELAN J, FERLAY L. Statistics Med., 1997, 19(9):1261-1263.

    8. [8]

      LEAL M P, BROCHETTI R A, IGNACIO A, CAMARA N O S, DA PALMA R K, DE OLIVEIRA L V F, DA SILVA D D T, LINO-DOS-SANTOS-FRANCO A. Toxicol. Rep., 2018, 5:512-520.

    9. [9]

      DANGI A K, SHARMA B, HILL R T, SHUKLA P. Crit. Rev. Biotechnol., 2019, 39(1):79-98.

    10. [10]

      GUIMARAES J R, FARAH C R T, MANIERO M G, FADINI P S. J. Environ. Manage., 2012, 107:96-101.

    11. [11]

      MOUSSAVI G, HEIDARIZAD M. Sep. Purif. Technol., 2011, 77(2):187-195.

    12. [12]

      PEREIRA N S, ZAIAT M. J. Hazard. Mater., 2009, 163(2):777-782.

    13. [13]

      EEVERS N, WHITE J C, VANGRONSVELD J, WEYENS N. Advances in Botanical Research, Academic Press, 2017, 83:277-318.

    14. [14]

    15. [15]

    16. [16]

      BYLESJO M, RANTALAINEN M, CLOAREC O, NICHOLSON J K, HOLMES E, TRYGG J. J. Chemom., 2006, 20:341-351.

    17. [17]

      CHONG J, SOUFAN O, LI C, CARAUS I, LI S, BOURQUE G, WISHART D S, XIA J. Nucleic Acids Res., 2018, 46(W1):486-494.

    18. [18]

      SHAO S, ZHOU T, MCGARVEY B D. Appl. Microbiol. Biotechnol., 2012, 94(3):789.

    19. [19]

      KIND T, WOHLGEMUTH G, LEE D Y, LU Y, PALAZOGLU M, SHAHBAZ S, FIEHN O. Anal. Chem., 2009, 81(24):10038-10048.

    20. [20]

      DUNN W B, BROADHURST D, BEGLEY P, ZELENA E, FRANCIS-MCINTYRE S, ANDERSON N, BROWN M, KNOWLES J D, HALSALL A, HASELDEN J N, NICHOLLS A W, WILSON I D, KELL D B, GOODACRE R, HUSERMET C. Nat Protoc., 2011, 6(7):1060-1083.

    21. [21]

    22. [22]

      QIN J F, CHEN H G, CAI W G, YANG T, JIA X P. J. Appl. Ecol., 2011, 22(7):1878-1884.

    23. [23]

      SUNGKEEREE P, WHANGSUK W, DUBBS J, MONGKOLSUK S, LOPRASERT S. Process Biochem., 2016, 51(8):1040-1045.

    24. [24]

      SULLIVAN L B, GUI D Y, HOSIOS A M, BUSH L N, FREINKMAN E, VANDER HEIDEN M G. Cell, 2015, 162(3):552-563.

    25. [25]

      BIRSOY K, WANG T, CHEN W W, FREINKMAN E, ABU-REMAILEH M, SABATINI D M. Cell, 2015, 162(3):540-551.

    26. [26]

    27. [27]

      PHANG J M, DONALD S P, PANDHARE J, LIU Y M. Amino Acids, 2008, 35(4):681-690.

    28. [28]

      PHANG J M, LIU W, ZABIRNYK O. Annu. Rev. Nutr., 2010, 30:441-463.

    29. [29]

      GWANGWA M V, JOUBERT A M, VISAGIE M H. Biol. Res., 2019, 52:15.

    30. [30]

      KOPPULA P, ZHUANG L, GAN B Y. Protein Cell, 2021. 12(8):599-620.

    31. [31]

      CHEN L, ZHANG Z Y, HOSHINO A, ZHENG H D, MORLEY M, ARANY Z, RABINOWITZ J D. Nat. Metab., 2019, 1(3):404-415.

    32. [32]

      LIU X G, OLSZEWSKI K, ZHANG Y L, LIM E W, SHI J J, ZHANG X S, ZHANG J, LEE H, KOPPULA P, LEI G, ZHUANG L, YOU M J, FANG B L, LI W, METALLO C M, POYUROVSKY M V, GAN B Y. Nat. Cell Biol., 2020, 22(4):476-486.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    7. [7]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    11. [11]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    12. [12]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    13. [13]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    18. [18]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

Metrics
  • PDF Downloads(9)
  • Abstract views(490)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return