Citation: CAO Jie,  GU Zhen,  LIU Ming-Feng,  DANG Li-Hong,  DU Qiu-Xiang,  LI Yu,  SUN Jun-Hong. Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1551-1559. doi: 10.19756/j.issn.0253-3820.221049 shu

Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics

  • Corresponding author: LI Yu,  SUN Jun-Hong, 
  • Received Date: 24 January 2022
    Revised Date: 24 July 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.81901924).

  • Postmortem interval (PMI) estimation is the key issue to be solved in forensic practice. The current technologies and methods lack accuracy, specificity and reproducibility, so reliable and stable molecular markers are needed to provide scientific evidence. In this study, proton nuclear magnetic resonance spectrum (1H NMR)-based metabolomics technology was used to explore the changes of small molecular compounds in rat skeletal muscles at different PMI, and the PMI was predicted combined with machine learning model. Ten Sprague-Dawley rats were sacrificed. Then the skeletal muscle tissues were collected at 0, 6, 12, 18, 24, 48 and 72 h (n=10) post-death. The metabolite profiles were obtained by 1H NMR. Twenty molecular markers including hydroxybutyric acid, lactic acid, tyrosine and hypoxanthine were filtered from the metabolite spectrum by orthogonal partial least squares (OPLS) method combined with Mann Whitney U test, database comparison and random forest (RF) feature selection. On this basis, a stacking ensemble model based on RF, gradient boosting decision tree (GBDT), linear discriminant analysis (LDA) as the base classifier and logistic regression (LR) classifier as meta-classifier was established to predict PMI. The prediction performance of the stacking ensemble learning model was better than those of RF, GBDT and LDA. The accuracy of this model for PMI estimation was 85.71% and the AUC value was 0.85. The results showed that 1H NMR technique combined with stacking ensemble model could effectively predict PMI by detecting metabolites changes in skeletal muscle of rats at different PMI, providing a new technique and analytical strategy for PMI inference.
  • 加载中
    1. [1]

    2. [2]

      PEYRON P A, LEHMANN S, DELABY C, BACCINO E, HIRTZ C. Crit. Rev. Clin. Lab. Sci., 2019, 56(4):274-286.

    3. [3]

    4. [4]

      BROOKS J W. Vet. Pathol., 2016, 53(5):929-940.

    5. [5]

      ZISSLER A, STOIBER W, STEINBACHER P, GEISSENBERGER J, MONTICELLI F C, PITTNER S. Diagnostics, 2020, 10(12):1014.

    6. [6]

      LIU R, WANG Q, ZHANG K, WU H, WANG G, CAI W, YU K, SUN Q, FAN S, WANG Z. Microb. Ecol., 2021, DOI:10.1007/s00248-021-01923-4.

    7. [7]

      WANG Y, WANG M, LUO C, LI L, XU W, HU G, WANG Y, AMENDT J, WANG J. Forensic. Sci. Int., 2021, 329:111090.

    8. [8]

      SZEREMETA M, PIETROWSKA K, NIEMCUNOWICZ-JANICA A, KRETOWSKI A, CIBOROWSKI M. Int. J. Mol. Sci., 2021, 22(6):2010.

    9. [9]

      CASTILLO-PEINADO L S, DE CASTROM D L. Anal. Chim. Acta, 2016, 925:1-15.

    10. [10]

      LOCCI E, BAZZANO G, CHIGHINE A, LOCCO F, FERRARO E, DEMONTIS R, D'ALOJA E. Metabolomics, 2020, 16(11):118.

    11. [11]

    12. [12]

      WEN Y, SONG X, YAN B, YANG X, WU L, LENG D, HE S, BO X. BMC Bioinformatics, 2021, 22(1):97.

    13. [13]

      ZHU W, ZHAI X, ZHENG Z, SUN K, YANG M, MO Y. Leg. Med., 2021, 48:101809.

    14. [14]

      DU T, LIN Z, XIE Y, YE X, TU C, JIN K, XIE J, SHEN Y. PLoS One, 2018, 13(9):e0203920.

    15. [15]

      AIELLO D, LUCA F, SICILIANO C, FRATI P, FINESCHI V, RONGO R, NAPOLI A. J. Proteome Res., 2021, 20(5):2607-2617.

    16. [16]

      BELK A, XU Z Z, CARTER D O, LYNNE A, BUCHELI S, KNIGHT R, METCALF J L. Genes, 2018, 9(2):104.

    17. [17]

      LIU R, GU Y, SHEN M, LI H, ZHANG K, WANG Q, WEI X, ZHANG H, WU D, YU K, CAI W, WANG G, ZHANG S, SUN Q, HUANG P, WANG Z. Environ. Microbiol., 2020, 22(6):2273-2291.

    18. [18]

    19. [19]

      YANG Y, WEI L, HU Y, WU Y, HU L, NIE S. J. Neurosci. Methods, 2021, 350:109019.

    20. [20]

      EZZAT A, WU M, LI X L, KWOH C K. Methods, 2017, 129:81-88.

    21. [21]

      PARKER G J, MCKIERNAN H E, LEGG K M, GOECKER Z C. Forensic Sci. Int. Genet., 2021, 54:102529.

    22. [22]

      CHOI K M, ZISSLER A, KIM E, EHRENFELLNER B, CHO E, LEE S I, STEINBACHER P, YUN K N, SHIN J H, KIM J Y, STOIBER W, CHUNG H, MONTICELLI F C, KIM J Y, PITTNER S. Int. J. Legal Med., 2019, 133(3):899-908.

    23. [23]

      PRIETO-BONETE G, PEREZ-CARCELES M D, MAURANDI-LOPEZ A, PEREZ-MARTINEZ C, LUNA A. J. Proteomics, 2019, 192:54-63.

    24. [24]

      JAWOR P, ZABEK A, WOJTOWICZ W, KROL D, STEFANIAK T, MLYNARZ P. BMC Vet. Res., 2019, 15:189.

    25. [25]

    26. [26]

      ZELENTSOVA E A, YANSHOLE L V, MELNIKOV A D, KUDRYAVTSEV I S, NOVOSELOV V P, TSENTALOVICH Y P. Metabolomics, 2020, 16(7):80.

    27. [27]

      GO A, SHIM G, PARK J, HWANG J, NAM M, JEONG H, CHUNG H. Forensic Sci. Int., 2019, 299:135-141.

    28. [28]

      HIRAKAWA K, KOIKE K, UEKUSA K, NIHIRA M, YUTA K, OHNO Y. Leg. Med., 2009, 11(Suppl 1):S282-S285.

    29. [29]

      KASZYNSKI R H, NISHIUMI S, AZUMA T, YOSHIDA M, KONDO T, TAKAHASHI M, ASANO M, UENO Y. Anal. Bioanal. Chem., 2016, 408(12):3103-3112.

    30. [30]

      MORA-ORTIZ M, TRICHARD M, OREGIONI A, CLAUS S P. Metabolomics, 2019, 15(3):37.

    31. [31]

      DONALDSON A E, LAMONT I L. PLoS One, 2013, 8(11):e82011.

    32. [32]

      SUN L, AN S, ZHANG Z, ZHOU Y, YU Y, MA Z, FAN X, TANG L, GUO J. Int. J. Mol. Sci., 2021, 22(22):12112.

    33. [33]

      IVES S J, ZALESKI K S, SLOCUM C, ESCUDERO D, SHERIDAN C, LEGESSE S, VIDAL K, LAGALWAR S, REYNOLDS T H. Physiol. Rep., 2020, 8(21):e14630.

    34. [34]

      KOUTNIK A P, D'AGOSTINO D P, EGAN B. Trends Endocrinol. Metab., 2019, 30(4):227-229.

    35. [35]

      PARK Y H, LEE K, SOLTOW Q A, STROBEL F H, BRIGHAM K L, PARKER R E, WILSON M E, SUTLIFF R L, MANSFIELD K G, WACHTMAN L M, ZIEGLER T R, JONES D P. Toxicology, 2012, 295(1-3):47-55.

    36. [36]

      CUI L, LU H, LEE Y H. Mass Spectrom. Rev., 2018, 37(6):772-792.

    37. [37]

      CAO J, JIN Q Q, WANG G M, DONG H L, FENG Y M, TIAN J S, YUN K M, WANG Y Y, SUN J H. Sci. Rep., 2018, 8:7837.

    38. [38]

      CAO J, LI J, GU Z, NIU J J, AN G S, JIN Q Q, WANG Y Y, HUANG P, SUN J H. Int. J. Legal Med., 2022, DOI:10.1007/s00414-022-02816-y

  • 加载中
    1. [1]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    9. [9]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    10. [10]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    11. [11]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    12. [12]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    16. [16]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    17. [17]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    18. [18]

      Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

Metrics
  • PDF Downloads(7)
  • Abstract views(401)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return