Citation: CAO Jie,  GU Zhen,  LIU Ming-Feng,  DANG Li-Hong,  DU Qiu-Xiang,  LI Yu,  SUN Jun-Hong. Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1551-1559. doi: 10.19756/j.issn.0253-3820.221049 shu

Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics

  • Corresponding author: LI Yu,  SUN Jun-Hong, 
  • Received Date: 24 January 2022
    Revised Date: 24 July 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.81901924).

  • Postmortem interval (PMI) estimation is the key issue to be solved in forensic practice. The current technologies and methods lack accuracy, specificity and reproducibility, so reliable and stable molecular markers are needed to provide scientific evidence. In this study, proton nuclear magnetic resonance spectrum (1H NMR)-based metabolomics technology was used to explore the changes of small molecular compounds in rat skeletal muscles at different PMI, and the PMI was predicted combined with machine learning model. Ten Sprague-Dawley rats were sacrificed. Then the skeletal muscle tissues were collected at 0, 6, 12, 18, 24, 48 and 72 h (n=10) post-death. The metabolite profiles were obtained by 1H NMR. Twenty molecular markers including hydroxybutyric acid, lactic acid, tyrosine and hypoxanthine were filtered from the metabolite spectrum by orthogonal partial least squares (OPLS) method combined with Mann Whitney U test, database comparison and random forest (RF) feature selection. On this basis, a stacking ensemble model based on RF, gradient boosting decision tree (GBDT), linear discriminant analysis (LDA) as the base classifier and logistic regression (LR) classifier as meta-classifier was established to predict PMI. The prediction performance of the stacking ensemble learning model was better than those of RF, GBDT and LDA. The accuracy of this model for PMI estimation was 85.71% and the AUC value was 0.85. The results showed that 1H NMR technique combined with stacking ensemble model could effectively predict PMI by detecting metabolites changes in skeletal muscle of rats at different PMI, providing a new technique and analytical strategy for PMI inference.
  • 加载中
    1. [1]

    2. [2]

      PEYRON P A, LEHMANN S, DELABY C, BACCINO E, HIRTZ C. Crit. Rev. Clin. Lab. Sci., 2019, 56(4):274-286.

    3. [3]

    4. [4]

      BROOKS J W. Vet. Pathol., 2016, 53(5):929-940.

    5. [5]

      ZISSLER A, STOIBER W, STEINBACHER P, GEISSENBERGER J, MONTICELLI F C, PITTNER S. Diagnostics, 2020, 10(12):1014.

    6. [6]

      LIU R, WANG Q, ZHANG K, WU H, WANG G, CAI W, YU K, SUN Q, FAN S, WANG Z. Microb. Ecol., 2021, DOI:10.1007/s00248-021-01923-4.

    7. [7]

      WANG Y, WANG M, LUO C, LI L, XU W, HU G, WANG Y, AMENDT J, WANG J. Forensic. Sci. Int., 2021, 329:111090.

    8. [8]

      SZEREMETA M, PIETROWSKA K, NIEMCUNOWICZ-JANICA A, KRETOWSKI A, CIBOROWSKI M. Int. J. Mol. Sci., 2021, 22(6):2010.

    9. [9]

      CASTILLO-PEINADO L S, DE CASTROM D L. Anal. Chim. Acta, 2016, 925:1-15.

    10. [10]

      LOCCI E, BAZZANO G, CHIGHINE A, LOCCO F, FERRARO E, DEMONTIS R, D'ALOJA E. Metabolomics, 2020, 16(11):118.

    11. [11]

    12. [12]

      WEN Y, SONG X, YAN B, YANG X, WU L, LENG D, HE S, BO X. BMC Bioinformatics, 2021, 22(1):97.

    13. [13]

      ZHU W, ZHAI X, ZHENG Z, SUN K, YANG M, MO Y. Leg. Med., 2021, 48:101809.

    14. [14]

      DU T, LIN Z, XIE Y, YE X, TU C, JIN K, XIE J, SHEN Y. PLoS One, 2018, 13(9):e0203920.

    15. [15]

      AIELLO D, LUCA F, SICILIANO C, FRATI P, FINESCHI V, RONGO R, NAPOLI A. J. Proteome Res., 2021, 20(5):2607-2617.

    16. [16]

      BELK A, XU Z Z, CARTER D O, LYNNE A, BUCHELI S, KNIGHT R, METCALF J L. Genes, 2018, 9(2):104.

    17. [17]

      LIU R, GU Y, SHEN M, LI H, ZHANG K, WANG Q, WEI X, ZHANG H, WU D, YU K, CAI W, WANG G, ZHANG S, SUN Q, HUANG P, WANG Z. Environ. Microbiol., 2020, 22(6):2273-2291.

    18. [18]

    19. [19]

      YANG Y, WEI L, HU Y, WU Y, HU L, NIE S. J. Neurosci. Methods, 2021, 350:109019.

    20. [20]

      EZZAT A, WU M, LI X L, KWOH C K. Methods, 2017, 129:81-88.

    21. [21]

      PARKER G J, MCKIERNAN H E, LEGG K M, GOECKER Z C. Forensic Sci. Int. Genet., 2021, 54:102529.

    22. [22]

      CHOI K M, ZISSLER A, KIM E, EHRENFELLNER B, CHO E, LEE S I, STEINBACHER P, YUN K N, SHIN J H, KIM J Y, STOIBER W, CHUNG H, MONTICELLI F C, KIM J Y, PITTNER S. Int. J. Legal Med., 2019, 133(3):899-908.

    23. [23]

      PRIETO-BONETE G, PEREZ-CARCELES M D, MAURANDI-LOPEZ A, PEREZ-MARTINEZ C, LUNA A. J. Proteomics, 2019, 192:54-63.

    24. [24]

      JAWOR P, ZABEK A, WOJTOWICZ W, KROL D, STEFANIAK T, MLYNARZ P. BMC Vet. Res., 2019, 15:189.

    25. [25]

    26. [26]

      ZELENTSOVA E A, YANSHOLE L V, MELNIKOV A D, KUDRYAVTSEV I S, NOVOSELOV V P, TSENTALOVICH Y P. Metabolomics, 2020, 16(7):80.

    27. [27]

      GO A, SHIM G, PARK J, HWANG J, NAM M, JEONG H, CHUNG H. Forensic Sci. Int., 2019, 299:135-141.

    28. [28]

      HIRAKAWA K, KOIKE K, UEKUSA K, NIHIRA M, YUTA K, OHNO Y. Leg. Med., 2009, 11(Suppl 1):S282-S285.

    29. [29]

      KASZYNSKI R H, NISHIUMI S, AZUMA T, YOSHIDA M, KONDO T, TAKAHASHI M, ASANO M, UENO Y. Anal. Bioanal. Chem., 2016, 408(12):3103-3112.

    30. [30]

      MORA-ORTIZ M, TRICHARD M, OREGIONI A, CLAUS S P. Metabolomics, 2019, 15(3):37.

    31. [31]

      DONALDSON A E, LAMONT I L. PLoS One, 2013, 8(11):e82011.

    32. [32]

      SUN L, AN S, ZHANG Z, ZHOU Y, YU Y, MA Z, FAN X, TANG L, GUO J. Int. J. Mol. Sci., 2021, 22(22):12112.

    33. [33]

      IVES S J, ZALESKI K S, SLOCUM C, ESCUDERO D, SHERIDAN C, LEGESSE S, VIDAL K, LAGALWAR S, REYNOLDS T H. Physiol. Rep., 2020, 8(21):e14630.

    34. [34]

      KOUTNIK A P, D'AGOSTINO D P, EGAN B. Trends Endocrinol. Metab., 2019, 30(4):227-229.

    35. [35]

      PARK Y H, LEE K, SOLTOW Q A, STROBEL F H, BRIGHAM K L, PARKER R E, WILSON M E, SUTLIFF R L, MANSFIELD K G, WACHTMAN L M, ZIEGLER T R, JONES D P. Toxicology, 2012, 295(1-3):47-55.

    36. [36]

      CUI L, LU H, LEE Y H. Mass Spectrom. Rev., 2018, 37(6):772-792.

    37. [37]

      CAO J, JIN Q Q, WANG G M, DONG H L, FENG Y M, TIAN J S, YUN K M, WANG Y Y, SUN J H. Sci. Rep., 2018, 8:7837.

    38. [38]

      CAO J, LI J, GU Z, NIU J J, AN G S, JIN Q Q, WANG Y Y, HUANG P, SUN J H. Int. J. Legal Med., 2022, DOI:10.1007/s00414-022-02816-y

  • 加载中
    1. [1]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041

    6. [6]

      Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067

    7. [7]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    8. [8]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    9. [9]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    10. [10]

      Jianqiang Zheng Yongbin Huang Wencan Ming Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062

    11. [11]

      Qian Wu Yuanxia Lv Zixuan Guo Zhihao Zhao Zhimin Zhang Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063

    12. [12]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    13. [13]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    15. [15]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    16. [16]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-0. doi: 10.3866/PKU.WHXB202310045

    17. [17]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    18. [18]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    19. [19]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    20. [20]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

Metrics
  • PDF Downloads(7)
  • Abstract views(629)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return