Citation:
CAO Jie, GU Zhen, LIU Ming-Feng, DANG Li-Hong, DU Qiu-Xiang, LI Yu, SUN Jun-Hong. Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(10): 1551-1559.
doi:
10.19756/j.issn.0253-3820.221049
-
Postmortem interval (PMI) estimation is the key issue to be solved in forensic practice. The current technologies and methods lack accuracy, specificity and reproducibility, so reliable and stable molecular markers are needed to provide scientific evidence. In this study, proton nuclear magnetic resonance spectrum (1H NMR)-based metabolomics technology was used to explore the changes of small molecular compounds in rat skeletal muscles at different PMI, and the PMI was predicted combined with machine learning model. Ten Sprague-Dawley rats were sacrificed. Then the skeletal muscle tissues were collected at 0, 6, 12, 18, 24, 48 and 72 h (n=10) post-death. The metabolite profiles were obtained by 1H NMR. Twenty molecular markers including hydroxybutyric acid, lactic acid, tyrosine and hypoxanthine were filtered from the metabolite spectrum by orthogonal partial least squares (OPLS) method combined with Mann Whitney U test, database comparison and random forest (RF) feature selection. On this basis, a stacking ensemble model based on RF, gradient boosting decision tree (GBDT), linear discriminant analysis (LDA) as the base classifier and logistic regression (LR) classifier as meta-classifier was established to predict PMI. The prediction performance of the stacking ensemble learning model was better than those of RF, GBDT and LDA. The accuracy of this model for PMI estimation was 85.71% and the AUC value was 0.85. The results showed that 1H NMR technique combined with stacking ensemble model could effectively predict PMI by detecting metabolites changes in skeletal muscle of rats at different PMI, providing a new technique and analytical strategy for PMI inference.
-
-
-
[1]
-
[2]
PEYRON P A, LEHMANN S, DELABY C, BACCINO E, HIRTZ C. Crit. Rev. Clin. Lab. Sci., 2019, 56(4):274-286.
-
[3]
-
[4]
BROOKS J W. Vet. Pathol., 2016, 53(5):929-940.
-
[5]
ZISSLER A, STOIBER W, STEINBACHER P, GEISSENBERGER J, MONTICELLI F C, PITTNER S. Diagnostics, 2020, 10(12):1014.
-
[6]
LIU R, WANG Q, ZHANG K, WU H, WANG G, CAI W, YU K, SUN Q, FAN S, WANG Z. Microb. Ecol., 2021, DOI:10.1007/s00248-021-01923-4.
-
[7]
WANG Y, WANG M, LUO C, LI L, XU W, HU G, WANG Y, AMENDT J, WANG J. Forensic. Sci. Int., 2021, 329:111090.
-
[8]
SZEREMETA M, PIETROWSKA K, NIEMCUNOWICZ-JANICA A, KRETOWSKI A, CIBOROWSKI M. Int. J. Mol. Sci., 2021, 22(6):2010.
-
[9]
CASTILLO-PEINADO L S, DE CASTROM D L. Anal. Chim. Acta, 2016, 925:1-15.
-
[10]
LOCCI E, BAZZANO G, CHIGHINE A, LOCCO F, FERRARO E, DEMONTIS R, D'ALOJA E. Metabolomics, 2020, 16(11):118.
-
[11]
-
[12]
WEN Y, SONG X, YAN B, YANG X, WU L, LENG D, HE S, BO X. BMC Bioinformatics, 2021, 22(1):97.
-
[13]
ZHU W, ZHAI X, ZHENG Z, SUN K, YANG M, MO Y. Leg. Med., 2021, 48:101809.
-
[14]
DU T, LIN Z, XIE Y, YE X, TU C, JIN K, XIE J, SHEN Y. PLoS One, 2018, 13(9):e0203920.
-
[15]
AIELLO D, LUCA F, SICILIANO C, FRATI P, FINESCHI V, RONGO R, NAPOLI A. J. Proteome Res., 2021, 20(5):2607-2617.
-
[16]
BELK A, XU Z Z, CARTER D O, LYNNE A, BUCHELI S, KNIGHT R, METCALF J L. Genes, 2018, 9(2):104.
-
[17]
LIU R, GU Y, SHEN M, LI H, ZHANG K, WANG Q, WEI X, ZHANG H, WU D, YU K, CAI W, WANG G, ZHANG S, SUN Q, HUANG P, WANG Z. Environ. Microbiol., 2020, 22(6):2273-2291.
-
[18]
-
[19]
YANG Y, WEI L, HU Y, WU Y, HU L, NIE S. J. Neurosci. Methods, 2021, 350:109019.
-
[20]
EZZAT A, WU M, LI X L, KWOH C K. Methods, 2017, 129:81-88.
-
[21]
PARKER G J, MCKIERNAN H E, LEGG K M, GOECKER Z C. Forensic Sci. Int. Genet., 2021, 54:102529.
-
[22]
CHOI K M, ZISSLER A, KIM E, EHRENFELLNER B, CHO E, LEE S I, STEINBACHER P, YUN K N, SHIN J H, KIM J Y, STOIBER W, CHUNG H, MONTICELLI F C, KIM J Y, PITTNER S. Int. J. Legal Med., 2019, 133(3):899-908.
-
[23]
PRIETO-BONETE G, PEREZ-CARCELES M D, MAURANDI-LOPEZ A, PEREZ-MARTINEZ C, LUNA A. J. Proteomics, 2019, 192:54-63.
-
[24]
JAWOR P, ZABEK A, WOJTOWICZ W, KROL D, STEFANIAK T, MLYNARZ P. BMC Vet. Res., 2019, 15:189.
-
[25]
-
[26]
ZELENTSOVA E A, YANSHOLE L V, MELNIKOV A D, KUDRYAVTSEV I S, NOVOSELOV V P, TSENTALOVICH Y P. Metabolomics, 2020, 16(7):80.
-
[27]
GO A, SHIM G, PARK J, HWANG J, NAM M, JEONG H, CHUNG H. Forensic Sci. Int., 2019, 299:135-141.
-
[28]
HIRAKAWA K, KOIKE K, UEKUSA K, NIHIRA M, YUTA K, OHNO Y. Leg. Med., 2009, 11(Suppl 1):S282-S285.
-
[29]
KASZYNSKI R H, NISHIUMI S, AZUMA T, YOSHIDA M, KONDO T, TAKAHASHI M, ASANO M, UENO Y. Anal. Bioanal. Chem., 2016, 408(12):3103-3112.
-
[30]
MORA-ORTIZ M, TRICHARD M, OREGIONI A, CLAUS S P. Metabolomics, 2019, 15(3):37.
-
[31]
DONALDSON A E, LAMONT I L. PLoS One, 2013, 8(11):e82011.
-
[32]
SUN L, AN S, ZHANG Z, ZHOU Y, YU Y, MA Z, FAN X, TANG L, GUO J. Int. J. Mol. Sci., 2021, 22(22):12112.
-
[33]
IVES S J, ZALESKI K S, SLOCUM C, ESCUDERO D, SHERIDAN C, LEGESSE S, VIDAL K, LAGALWAR S, REYNOLDS T H. Physiol. Rep., 2020, 8(21):e14630.
-
[34]
KOUTNIK A P, D'AGOSTINO D P, EGAN B. Trends Endocrinol. Metab., 2019, 30(4):227-229.
-
[35]
PARK Y H, LEE K, SOLTOW Q A, STROBEL F H, BRIGHAM K L, PARKER R E, WILSON M E, SUTLIFF R L, MANSFIELD K G, WACHTMAN L M, ZIEGLER T R, JONES D P. Toxicology, 2012, 295(1-3):47-55.
-
[36]
CUI L, LU H, LEE Y H. Mass Spectrom. Rev., 2018, 37(6):772-792.
-
[37]
CAO J, JIN Q Q, WANG G M, DONG H L, FENG Y M, TIAN J S, YUN K M, WANG Y Y, SUN J H. Sci. Rep., 2018, 8:7837.
-
[38]
CAO J, LI J, GU Z, NIU J J, AN G S, JIN Q Q, WANG Y Y, HUANG P, SUN J H. Int. J. Legal Med., 2022, DOI:10.1007/s00414-022-02816-y
-
[1]
-
-
-
[1]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[2]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[3]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[4]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[5]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041
-
[6]
Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067
-
[7]
Weigang Zhu , Jianfeng Wang , Qiang Qi , Jing Li , Zhicheng Zhang , Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002
-
[8]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[9]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[10]
Jianqiang Zheng , Yongbin Huang , Wencan Ming , Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062
-
[11]
Qian Wu , Yuanxia Lv , Zixuan Guo , Zhihao Zhao , Zhimin Zhang , Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063
-
[12]
Zelin Wang , Gang Liu , Mengran Wang , Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077
-
[13]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[14]
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
-
[15]
Haiyang Jin , Yonghai Hui , Yongfei Zhang , Lijun Gao , Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022
-
[16]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-0. doi: 10.3866/PKU.WHXB202310045
-
[17]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
-
[18]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[19]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[20]
Peihong Fan , Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078
-
[1]
Metrics
- PDF Downloads(7)
- Abstract views(629)
- HTML views(67)
Login In
DownLoad: