Citation: CAI Le-Si,  HUO Yu-Meng,  TIAN Wei,  ZHAO Xia,  ZHANG Si-Chun,  ZHANG Xin-Rong. Application of Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging Technique in Illicit Drug Research[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 973-984. doi: 10.19756/j.issn.0253-3820.221037 shu

Application of Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging Technique in Illicit Drug Research

  • Corresponding author: ZHAO Xia, lubin_fast@sohu.com
  • Received Date: 19 January 2022
    Revised Date: 18 March 2022

    Fund Project: Supported by the Narcotics Control Technology Project of the Ministry of Public Security of the People's Republic of China (No.2021jdgga06).

  • At present, the drug situation at home and abroad is still severe. The development of new drugs is extremely fast, the levels of concealment and complexity of drug-related cases are increasing, and the mechanism of drug addiction is still unclear. Therefore, it is urgent to develop advanced drug analytical methods to deal with the above international problems. Mass spectrometry imaging technology has both molecular identification and imaging functions, providing a new analytical method and research horizon for drug research. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), as a typical representative of mass spectrometry imaging technology, has been widely used in drug-related basic scientific research and detection method development. In this paper, the applications of MALDI-MSI in drug addiction mechanism, forensic drug analysis and drug original plant research were reviewed. The future directions and applications of this technology in the drug-related research were also discussed.
  • 加载中
    1. [1]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20):2299-2301.

    2. [2]

      KARAS M, BACHMANN D, BAHR U, HILLENKAMP F. Int. J. Mass Spectrom. Ion Processes., 1987, 78:53-68.

    3. [3]

      NIEHAUS M, ROBINSON K N, MURTA T, ELIA E A, RACE A M, YAN B, STEVEN R T, BUNCH J. J. Am. Soc. Mass Spectrom., 2020, 31(11):2287-2295.

    4. [4]

      PRENTICE B M, RYAN D J, VAN DE PLAS R, CAPRIOLI R M, SPRAGGINS J M. Anal. Chem., 2018, 90(8):5090-5099.

    5. [5]

      VRKOSLAV V, MUCK A, BROWN J M, HUBALEK M, CVACKA J. Rapid Commun. Mass Spectrom., 2018, 32(24):2099-2105.

    6. [6]

      DEBOIS D, ONGENA M, CAWOY H, DE PAUW E. J. Am. Soc. Mass Spectrom., 2013, 24(8):1202-1213.

    7. [7]

      SCHAEPE K, BHANDARI D R, WERNER J, HENSS A, PIRKL A, KLEINE-BOYMANN M, ROHNKE M, WENISCH S, NEUMANN E, JANEK J, SPENGLER B. Anal. Chem., 2018, 90(15):8856-8864.

    8. [8]

      BEASLEY E, FRANCESE S, BASSINDALE T. Anal. Chem. 2016, 88(20):10328-10334.

    9. [9]

      BANAZADEH A, PENG W, VEILLON L, MECHREF Y. J. Am. Soc. Mass Spectrom., 2018, 29(9):1892-1900.

    10. [10]

      PIRET G, DROBECQ H, COFFINIER Y, MELNYK O, BOUKHERROUB R. Langmuir, 2010, 26(2):1354-1361.

    11. [11]

      WAKI M, SUGIYAMA E, KONDO T, SANO K, SETOU M. Methods Mol. Biol., 2015, 1203:159-173.

    12. [12]

    13. [13]

    14. [14]

      CHATTERJI B, PICH A. Expert Rev. Proteomics, 2013, 10(4):381-388.

    15. [15]

      WANG Y, HUMMON A B. J. Biol. Chem., 2021, 297(4):101139.

    16. [16]

      REYZER M L, CAPRIOLI R M. Curr. Opin. Chem. Biol., 2007, 11(1):29-35.

    17. [17]

      O'NEILL K C, LEE Y J. Front. Plant Sci., 2020, 11:639.

    18. [18]

      KAYA I, SAMFORS S, LEVIN M, BOREN J, FLETCHER J S. J. Am. Soc. Mass Spectrom., 2020, 31(10):2133-2142.

    19. [19]

      SHARIATGORJI M, NILSSON A, FRIDJONSDOTTIR E, VALLIANATOU T, KALLBACK P, KATAN L, SAVMARKER J, MANTAS I, ZHANG X, BEZARD E, SVENNINGSSON P, ODELL L R, ANDREN P E. Nat. Methods, 2019, 16(10):1021-1028.

    20. [20]

      BOWMAN A P, BOGIE J F J, HENDRIKS J J A, HAIDAR M, BELOV M, HEEREN R M A, ELLIS S R. Anal. Bioanal. Chem., 2020, 412(10):2277-2289.

    21. [21]

      BHANDARI D R, COLIVA G, FEDOROVA M, SPENGLER B. Methods Mol. Biol., 2020, 2064:103-111.

    22. [22]

      GARIKAPATI V, KARNATI S, BHANDARI D R, BAUMGART-VOGT E, SPENGLER B. Sci. Rep., 2019, 9:3192.

    23. [23]

      BERRY K A, HANKIN J A, BARKLEY R M, SPRAGGINS J M, CAPRIOLI R M, MURPHY R C. Chem. Rev., 2011, 111(10):6491-6512.

    24. [24]

      CORNETT D S, REYZER M L, CHAURAND P, CAPRIOLI R M. Nat. Methods., 2007, 4(10):828-833.

    25. [25]

      JACKSON S N, WANG H Y, WOODS A S. Anal. Chem., 2005, 77(14):4523-4527.

    26. [26]

      MURRAY K K, SENEVIRATNE C A, GHORAI S. Methods, 2016, 104:118-126.

    27. [27]

      BEDNARIK A, MACHALKOVA M, MOSKOVETS E, COUFALIKOVA K, KRASENSKY P, HOUSKA P, KROUPA J, NAVRATILOVA J, SMARDA J, PREISLER J. J. Am. Soc. Mass Spectrom., 2019, 30(2):289-298.

    28. [28]

      KOMPAUER M, HEILES S, SPENGLER B. Nat. Methods, 2017, 14(1):90-96.

    29. [29]

      NIEHAUS M, SOLTWISCH J, BELOV M E, DREISEWERD K. Nat. Methods, 2019, 16(9):925-931.

    30. [30]

      RAPPEZ L, STADLER M, TRIANA S, GATHUNGU R M, OVCHINNIKOVA K, PHAPALE P, HEIKENWALDER M, ALEXANDROV T. Nat. Methods, 2021, 18(7):799-805.

    31. [31]

      CLARIDGE H, WILLIAMS B D, COPELAND C S. Br. J. Clin. Pharmacol., 2020, 86(3):437-444.

    32. [32]

      HAN Y, YAN W, ZHENG Y, KHAN M Z, YUAN K, LU L. Transl. Psychiatry, 2019, 9:282.

    33. [33]

      SUZUKI J, EL-HADDAD S. Drug Alcohol Depend., 2017, 171:107-116.

    34. [34]

      ALVES V L, GONCALVES J L, AGUIAR J, TEIXEIRA H M, CAMARA J S. Crit. Rev. Toxicol., 2020, 50(5):359-382.

    35. [35]

      DEBRUYNE D, LE BOISSELIER R. Subst. Abuse Rehabil., 2015, 6(5):113-129.

    36. [36]

      LOBATO-FREITAS C, BRITO-DA-COSTA A M, DINIS-OLIVEIRA R J, CARMO H, CARVALHO F, SILVA J P, DIAS-DA-SILVA D. Pharmaceuticals, 2021, 14(3):186.

    37. [37]

      ANGOA-PEREZ M, ANNEKEN J H, KUHN D M. Curr. Top Behav. Neurosci., 2017, 32:209-230.

    38. [38]

      PATOCKA J, ZHAO B, WU W, KLIMOVA B, VALIS M, NEPOVIMOVA E, KUCA K. Int. J. Mol. Sci., 2020, 21(21):19-22.

    39. [39]

      SIMMONS S J, LEYRER-JACKSON J M, OLIVER C F, HICKS C, MUSCHAMP J W, RAWLS S M, OLIVE M F. ACS Chem. Neurosci., 2018, 9(10):2379-2394.

    40. [40]

      FRANCESE S, DANI F R, TRALDI P, MASTROBUONI G, PIERACCINI G, MONETI G. Comb. Chem. High Throughput Screening, 2009, 12(2):156-174.

    41. [41]

      KRISMER J, SOBEK J, STEINHOFF R F, BRONNIMANN R, PABST M, ZENOBI R. Methods Mol. Biol., 2020, 2064:113-124.

    42. [42]

      QIN L, ZHANG Y, LIU Y, HE H, HAN M, LI Y, ZENG M, WANG X. Phytochem. Anal., 2018, 29(4):351-364.

    43. [43]

      DREXLER D M, GARRETT T J, CANTONE J L, DITERS R W, MITROKA J G, PRIETO CONAWAY M C, ADAMS S P, YOST R A,SANDERS M. J. Pharmacol. Toxicol. Methods, 2007, 55(3):279-288.

    44. [44]

      REYZER M L, HSIEH Y, NG K, KORFMACHER W A, CAPRIOLI R M. J. Mass Spectrom., 2003, 38(10):1081-1092.

    45. [45]

      VEGVARI A. Biomarkers Med., 2015, 9(9):869-876.

    46. [46]

      BANAZADEH A, WILLIAMSON S, ZABET M, HUSSIEN A, MECHREF Y. Anal. Bioanal. Chem., 2018, 410(28):7395-7404.

    47. [47]

      FANG X, ZHANG K, YANG P, QIAO L, LIU B. Rapid Commun. Mass Spectrom., 2016, 30(Suppl 1):128-132.

    48. [48]

      HUANG H, SUN L, HE H, XIA T. Biomed. Res. Int., 2020, 2020:8597217.

    49. [49]

      LI C, LI Z, TUO Y, MA D, SHI Y, ZHANG Q, ZHUO X, DENG K, CHEN Y, WANG Z, HUANG P. Sci. Rep., 2017, 7:4887.

    50. [50]

      REICH R F, CUDZILO K, LEVISKY J A, YOST R A. J. Am. Soc. Mass Spectrom., 2010, 21(4):564-571.

    51. [51]

      TAKAHASHI Y, SANO R, NAKAJIMA T, KOMINATO Y, KUBO R, TAKAHASHI K, OHSHIMA N, HIRANO T, KOBAYASHI S, SHIMADA T, TOKUE H, AWATA S, HIRASAWA S, ISHIGE T. Forensic Sci. Int., 2014, 244:34-37.

    52. [52]

      LI K W, JIMENEZ C R, VAN DER SCHORS R C, HORNSHAW M P, SCHOFFELMEER A N, SMIT A B. Proteomics, 2006, 6(6):2003-2008.

    53. [53]

      TEKLEZGI B G, PAMREDDY A, BAIJNATH S, GOPAL N D, NAICKER T, KRUGER H G, GOVENDER T. J. Mol. Histol., 2017, 48(4):285-292.

    54. [54]

      VOLKOW N D, BOYLE M. Am. J. Psychiatry, 2018, 175(8):729-740.

    55. [55]

      VOLKOW N D, WANG G J, FOWLER J S, TOMASI D. Annu. Rev. Pharmacol. Toxicol., 2012, 52:321-336.

    56. [56]

      HUBER K, FEUCHTINGER A, BORGMANN D M, LI Z, AICHLER M, HAUCK S M, ZITZELSBERGER H, SCHWAIGER M, KELLER U, WALCH A. Anal. Chem., 2014, 86(21):10568-10575.

    57. [57]

      LIU X, IDE J L, NORTON I, MARCHIONNI M A, EBLING M C, WANG L Y, DAVIS E, SAUVAGEOT C M, KESARI S, KELLERSBERGER K A, EASTERLING M L, SANTAGATA S, STUART D D, ALBERTA J, AGAR J N, STILES C D, AGAR N Y. Sci. Rep., 2013, 3:28-59.

    58. [58]

      SPENGLER B. Anal. Chem., 2015, 87(1):64-82.

    59. [59]

      PIRMAN D A, REICH R F, KISS A, HEEREN R M, YOST R A. Anal. Chem., 2013, 85(2):1081-1089.

    60. [60]

      TEKLEZGI B G, PAMREDDY A, BAIJNATH S, KRUGER H G, NAICKER T, GOPAL N D, GOVENDER T. Addict. Biol., 2019, 24(3):438-446.

    61. [61]

      TEKLEZGI B G, PAMREDDY A, NTSHANGASE S, MDANDA S, SINGH S D, GOPAL N D, NAICKER T, KRUGER H G, GOVENDER T, BAIJNATH S. ACS Omega, 2020, 5(22):12596-12602.

    62. [62]

      DETTMER K, ARONOV P A, HAMMOCK B D. Mass Spectrom. Rev., 2007, 26(1):51-78.

    63. [63]

      JOHNSON C H, IVANISEVIC J, SIUZDAK G. Nat. Rev. Mol. Cell Biol., 2016, 17(7):451-459.

    64. [64]

      KADDURAH-DAOUK R, KRISTAL B S, WEINSHILBOUM R M. Annu. Rev. Pharmacol. Toxicol., 2008, 48:653-683.

    65. [65]

      HEAL D, FRANKLAND A, BUCKETT W. Neuropharmacology, 1990, 29(12):1141-1150.

    66. [66]

      KARINEN R, ANDERSEN J M, RIPEL A, HASVOLD I, HOPEN A B, MORLAND J, CHRISTOPHERSEN A S. J. Anal. Toxicol., 2009, 33(7):345-350.

    67. [67]

      KNUTH M, TEMME O, DALDRUP T, PAWLIK E. Forensic Sci. Int., 2018, 285:86-92.

    68. [68]

      FOWLER J S, VOLKOW N D, KASSED C A, CHANG L. Sci. Pract. Perspect., 2007, 3(2):4-16.

    69. [69]

      WAGNER C C, LANGER O. Adv. Drug Deliv. Rev., 2011, 63(7):539-546.

    70. [70]

      NING T, LENG C, CHEN L, MA B, GONG X. BMC Neurosci., 2018, 19(1):4-5.

    71. [71]

      BOXLER M I, STREUN G L, LIECHTI M E, SCHMID Y, KRAEMER T, STEUER A E. J. Proteome Res., 2018, 17(8):2900-2907.

    72. [72]

      WANG F, MENG J, ZHANG L, JOHNSON T, CHEN C, ROY S. Sci. Rep., 2018, 8:3596.

    73. [73]

      LIN M, XU J M, LIU X, DAI Z F, LIU Z M, ZHAO X, SUN Y, PU X P. RSC Adv., 2019, 9(70):41107-41119.

    74. [74]

      XU J, ZHANG Z, LIU R, SUN Y, LIU H, NIE Z, ZHAO X, PU X P. Behav. Brain Res., 2019, 364:233-244.

    75. [75]

      JOYE T, BARARPOUR N, AUGSBURGER M, BOUTREL B, THOMAS A. Int. J. Mass Spectrom., 2019, 437:87-91.

    76. [76]

      PATI S, ANGEL P, DRAKE R R, WAGNER J J, CUMMINGS B S. Brain Behav., 2019, 9(12):e01451.

    77. [77]

      DOMON B, AEBERSOLD R. Science, 2006, 312(5771):212-217.

    78. [78]

      SONG Z H, LAUN A S, CAI J. Methods Enzymol., 2017, 593:371-386.

    79. [79]

      TANNU N S, HOWELL L L, HEMBY S E. Mol. Psychiatry, 2010, 15(2):185-203.

    80. [80]

      AEBERSOLD R, GOODLETT D R. Chem. Rev., 2001, 101(2):269-295.

    81. [81]

      AEBERSOLD R, MANN M. Nature, 2003, 422(6928):198-207.

    82. [82]

      TANNU N, MASH D C, HEMBY S E. Mol. Psychiatry, 2007, 12(1):55-73.

    83. [83]

    84. [84]

      YANG L, SUN Z S, ZHU Y P. J. Proteome Res., 2007, 6(6):2239-2247.

    85. [85]

      UYS J D, GREY A C, WIGGINS A, SCHWACKE J H, SCHEY K L, KALIVAS P W. J. Mass Spectrom., 2010, 45(1):97-103.

    86. [86]

      IWAZAKI T, MCGREGOR I S, MATSUMOTO I. Proteomics, 2007, 7(7):1131-1139.

    87. [87]

      MADRY M M, BOSSHARD M M, KRAEMER T, BAUMGARTNER M R. Bioanalysis, 2016, 8(9):953-964.

    88. [88]

      PRAGST F, KRUMBIEGEL F, THURMANN D, WESTENDORF L, METHLING M, NIEBEL A, HARTWIG S. Forensic Sci. Int., 2019, 297:161-170.

    89. [89]

      WANG T, SHEN B, WU H, GU J, SHEN M, XIANG P. J. Anal. Toxicol., 2020, 44(6):596-600.

    90. [90]

      KIM J, JI D, KANG S, PARK M, YANG W, KIM E, CHOI H, LEE S. J. Pharm. Biomed. Anal., 2014, 89:99-105.

    91. [91]

      LEE S, KIM J, IN S, CHOI H, OH S M, JANG C G, CHUNG K H. Anal. Bioanal. Chem., 2012, 403(5):1385-1394.

    92. [92]

    93. [93]

      MIKI A, KATAGI M, KAMATA T, ZAITSU K, TATSUNO M, NAKANISHI T, TSUCHIHASHI H, TAKUBO T, SUZUKI K. J. Mass Spectrom., 2011, 46(4):411-416.

    94. [94]

      MIKI A, KATAGI M, SHIMA N, KAMATA H, TATSUNO M, NAKANISHI T, TSUCHIHASHI H, TAKUBO T, SUZUKI K. Forensic Toxicol., 2011, 29(2):111-116.

    95. [95]

      PORTA T, GRIVET C, KRAEMER T, VARESIO E, HOPFGARTNER G. Anal. Chem., 2011, 83(11):4266-4272.

    96. [96]

      KERNALLEGUEN A, ENJALBAL C, ALVAREZ J C, BELGACEM O, LEONETTI G, LAFITTE D, PELISSIER-ALICOT A L. Anal. Chim. Acta, 2018, 1041:87-93.

    97. [97]

      KAMATA T, SHIMA N, MIKI A, MATSUO E, YAMAMOTO T, TSUCHIHASHI H, SATO T, SHIMMA S, KATAGI M. Anal. Chem., 2020, 92(8):5821-5829.

    98. [98]

      PETROSELLI G, RAICES M, JUNGBLUT L D, POZZI A G, ERRA-BALSELLS R. J. Mass Spectrom., 2018, 53(6):465-475.

    99. [99]

      EMERSON B, GIDDEN J, LAY J O, DURHAM B. J. Forensic Sci., 2011, 56(2):381-389.

    100. [100]

      BANAS A, BANAS K, BREESE M B, LOKE J, TEO B H, LIM S K. Analyst, 2012, 137(15):3459-3465.

    101. [101]

      GRANT A, WILKINSON T J, HOLMAN D R, MARTIN M C. Appl. Spectrosc., 2005, 59(9):1182-1187.

    102. [102]

      PARSON W. Gerontology, 2018, 64(4):326-332.

    103. [103]

      ISMAIL M, STEVENSON D, COSTA C, WEBB R, DE PUIT M, BAILEY M. Clin. Chem., 2018, 64(6):909-917.

    104. [104]

      JANG M, COSTA C, BUNCH J, GIBSON B, ISMAIL M, PALITSIN V, WEBB R, HUDSON M, BAILEY M J. Sci. Rep., 2020, 10(1):1974.

    105. [105]

      BAILEY M J, BRADSHAW R, FRANCESE S, SALTER T L, COSTA C, ISMAIL M, WEBB R P, BOSMAN I, WOLFF K, DE PUIT M. Analyst, 2015, 140(18):6254-6259.

    106. [106]

      MOU Y, RABALAIS J W. J. Forensic Sci., 2009, 54(4):846-850.

    107. [107]

      PENG T, QIN W, WANG K, SHI J, FAN C, LI D. Anal. Chem., 2015, 87(18):9403-9407.

    108. [108]

      TRIPATHI A, EMMONS E D, WILCOX P G, GUICHETEAU J A, EMGE D K, CHRISTESEN S D, FOUNTAIN A W. Appl. Spectrosc., 2011, 65(6):611-619.

    109. [109]

      TRIM P J, SNEL M F. Methods, 2016, 104:127-141.

    110. [110]

      MAININI V, LALOWSKI M, GOTSOPOULOS A, BITSIKA V, BAUMANN M, MAGNI F. Methods Mol. Biol., 2015, 1243:139-164.

    111. [111]

      COSTA C, JANG M, DE JESUS J, STEVEN R T, NIKULA C J, ELIA E, BUNCH J, BELLEW A T, WATTS J F, HINDER S, BAILEY M J. Analyst, 2021, 146(12):4010-4021.

    112. [112]

      GROENEVELD G, DE PUIT M, BLEAY S, BRADSHAW R, FRANCESE S. Sci. Rep., 2015, 5:11716.

    113. [113]

      SKRIBA A, HAVLICEK V. Eur. J. Mass Spectrom., 2018, 24(1):124-128.

    114. [114]

      SCOTCHER K, BRADSHAW R. Sci. Rep., 2018, 8:8765.

    115. [115]

      LAUZON N, CHAURAND P. Analyst, 2018, 143(15):3586-3594.

    116. [116]

      BRACHET A, CHRISTEN P, GAUVRIT J Y, LONGERAY R, LANTÉRI P, VEUTHEY J L. J. Biochem. Biophys. Methods, 2000, 43(1-3):353-366.

    117. [117]

      LI F S, WENG J K. Nat. Plants, 2017, 3:17109-17110.

    118. [118]

      KARGILI U, AYTAC E. J. Supercrit. Fluids, 2022, 179:105410

    119. [119]

      DOS SANTOS N A, DE SOUZA L M, PINTO F E, DE J. MACRINO C, DE ALMEIDA C M, MERLO B B, FILGUEIRAS P R, ORTIZ R S, MOHANA-BORGES R, ROMÃO W. Anal. Methods, 2019, 11(13):1757-1764.

    120. [120]

      DOS SANTOS N A, DE ALMEIDA C M, GONCALVES F F, ORTIZ R S, KUSTER R M, SAQUETTO D, ROMAO W. J. Am. Soc. Mass Spectrom., 2021, 32(4):946-955.

    121. [121]

      LIU H H, ZHOU Y M, WANG J Y, XIONG C Q, XUE J J, ZHANG L P, NIE Z X. Anal. Chem., 2018, 90(1):729-736.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    9. [9]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    10. [10]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    17. [17]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    18. [18]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    19. [19]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    20. [20]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

Metrics
  • PDF Downloads(6)
  • Abstract views(494)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return