Citation: HUANG Xiao-Mei,  DENG Xiang,  XING Lang-Man,  CHEN Wei,  SUN Li,  ZHU Xiao-Yu. An Electrochemiluminescence Sensor Based on Gold and Silver Bimetal Nanocluster and Ternary Carbon Nanosheets for Detection of Alpha Fetoprotein[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1567-1577. doi: 10.19756/j.issn.0253-3820.221029 shu

An Electrochemiluminescence Sensor Based on Gold and Silver Bimetal Nanocluster and Ternary Carbon Nanosheets for Detection of Alpha Fetoprotein

  • Corresponding author: HUANG Xiao-Mei, huangxm917@163.com
  • Received Date: 17 January 2022
    Revised Date: 30 June 2022

    Fund Project: Supported by the Scientific Research Fund of the Sichuan Provincial Science and Technology Department (No.2019YJ0307), the Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province (No.TSZW2005, TSZW2004), the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (No.LYJ1802), the Dazhou Municipal Science Project of Technology Bureau Application Foundation (No.18YYJC0002) and the National University Innovation and Entrepreneurship Training Program(No.202110644011).

  • Carbon-based transition metal oxide nanosheets metal-organic framework material(Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C) were prepared by one-step room temperature process, pyrolysis in air, and in-situ reduction method. Then the Au-Ag NCs-TAEA-Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C ternary luminescent composite nanomaterials were synthesized for the first time with gold-silver bimetallic nanoclusters (Au-Ag NCs) as luminophor, tri-(3-aminoethyl) amine (TAEA) as coreactant and Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C as coreaction accelerator. A sandwich electrochemiluminescence (ECL) immunosensor was thus constructed by combining the ternary luminescent composite with alpha fetoprotein (AFP) secondary antibody as capture probe for ultra-sensitive detection of AFP. The ternary Au-Ag NCs-TAEA-Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C luminescent nanocomposites had excellent ECL properties due to the dual catalytic synergy of intramolecular coreaction promoters and intramolecular coreactants, and the "silver effect" of bimetallic nanoclusters. Without any additional signal amplification strategy, the detection range of the ECL biosensor for AFP was 0.001-100 ng/mL, and the detection limit was as low as 0.3 pg/mL. Moreover, the proposed ECL immunosensor was expected to be applied to the diagnosis and bioanalysis of other biomolecules.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      DING M M, CHEN J, JIANG M W, ZHANG X J, WANG G F. J. Mater. Chem. A, 2019, 7(23):14163-14168.

    4. [4]

      LI Y W, ZHAO T, LU M T, WU Y H, XIE Y B, XU H, GAO J K, YAO J M, QIAN G D, ZHANG Q C. Small, 2019, 15(43):1901940.

    5. [5]

    6. [6]

    7. [7]

      ZHANG G Y, LI M J, YU K, CHAI H N, XU S H, XU T L, QU L J, ZHANG X J. ACS Appl. Bio. Mater., 2021, 4(2):1616-1623.

    8. [8]

      CUI L, ZHAO M H, LI C C, WANG Q B, LUO X L, ZHANG C Y. Anal. Chem., 2021, 93(5):2974-2978

    9. [9]

      ARCHANA V, YANG X, FANG R Y, KUMAR G G. ACS Sustainable Chem. Eng., 2019, 7(7):6707-6719.

    10. [10]

      TALIN A A, CENTRONE A, FORD A C, FOSTER M E, STAVILA V, HANEY P. Science, 2014, 343(6166):66-69.

    11. [11]

      CHAIKITTISILP W, TORAD N L, LI C L, IMERA M, SUZUKI N, ISHIHARA S, ARIGA K, YAMAUCHI Y. Chem.-Eur. J., 2014, 20(15):4217-4221.

    12. [12]

      ZHANG L, DING Y R, LI R R, YE C, ZHAO G Y, WANG Y. J. Mater. Chem. B, 2017, 5(28):5549-5555.

    13. [13]

      ZHUANG X Y, ZHANG X D, CHEN Q M, LI S Q, CAO H Y, HUANG Y M. Mater. Sci. Eng. C, 2019, 94:858-866.

    14. [14]

    15. [15]

      KADIMISETTY K, MALLA S, SARDESAI N P, JOSHI A A, FARIA R C, LEE N H, RUSLING J F. Anal. Chem., 2015, 87(8):4472-4478.

    16. [16]

    17. [17]

      CUI L, ZHOU J H, LI C C, DENG S Y, GAO W Q, ZHANG X M, LUO X L, WANG X L, ZHANG C Y. ACS Appl. Mater. Interfaces, 2021, 13(24):28782-28789.

    18. [18]

      LI Y Y, LIU D, MENG S Y, ZHANG J Y, LI L B, YOU T Y. Anal. Chem., 2022, 94(2):1294-1301.

    19. [19]

      KAMYABI M A, ALIPOUR Z, MOHARRAMNEZHAD M. J. Solid State Electrochem., 2021, 25(2):445-456.

    20. [20]

      ZHU H Y, DING S N. Biosens. Bioelectron., 2019, 134:109-116.

    21. [21]

      WANG T Y, WANG D C, PADELFORD J W, JIANG J, WANG G L. J. Am. Chem. Soc., 2016, 138(20):6380-6383.

    22. [22]

      KANG Y, KIM J. ChemElectroChem, 2020, 7(5):1092-1096.

    23. [23]

      FU L, GAO X Y, DONG S T, HSU H Y, ZOU G Z. Anal. Chem., 2021, 93(11):4909-4915.

    24. [24]

      GE J J, CHEN X F, YANG J L, WANG Y Y. Analyst, 2021, 146(3):803-815.

    25. [25]

      MUZYKA K, SAQIB M, LIU Z Y, ZHANG W, XU G B. Biosens. Bioelectron., 2017, 92:241-258.

    26. [26]

      YANG X, YU Y Q, PENG L Z, LEI Y M, CHAI Y Q, YUAN R, ZHUO Y. Anal. Chem., 2018, 90(6):3995-4002.

    27. [27]

      WANG H J, YUAN Y L, CHAI Y Q, YUAN R. Biosens. Bioelectron., 2015, 68:72-77.

    28. [28]

      CARRARA S, ARCUDI F, PRATO M, DE COLA L. Angew. Chem., Int. Ed., 2017, 56(17):4757-4761.

    29. [29]

      WU F F, ZHOU Y, ZHANG H, YUAN R, CHAI Y Q. Anal. Chem., 2018, 90(3):2263-2270.

    30. [30]

      HUANG Y Z, JIANG Y X, ZOU L, CHENG J F, CHI B, PU J, LI J. J. Electrochem. Soc., 2017, 164(14):A3896-A3902.

    31. [31]

      ZHAI Q F, XING H H, ZHANG X W, LI J, WANG E K. Anal. Chem., 2017, 89(14):7788-7794.

    32. [32]

      HUANG X M, DENG X, QI W J, WU D. Sens. Actuators, B, 2018, 273:466-472.

    33. [33]

      LIU J B, ZHAO R S, WANG X, GAO X W, ZOU G Z. Chem. Commun., 2020, 56(42):5665-5668.

    34. [34]

      ZHOU Y, CHEN S H, LUO X L, CHAI Y Q, YUAN R. Anal. Chem., 2018, 90(16):10024-10030.

    35. [35]

      GAO K, QIAO X W, HONG C L. Micro Nano Lett., 2018, 13(1):58-62.

    36. [36]

    37. [37]

      LI Y K, DONG L Y, WANG X F, LIU Y, LIU H L, XIE M X. Spectrochim. Acta, 2018, 196:103-109.

    38. [38]

      ZHANG Z, GUAN Y P, XU G L, GUO C. Microchem. J., 2019, 147:824-831.

    39. [39]

      LI X J, GUO Q F, CAO W, LI Y Y, DU B, WEI Q. Anal. Biochem., 2014, 457(15):59-64.

    40. [40]

      ZHENG X L, HUA X X, QIAO X Y, XIA F Q, ZHOU C L. RSC Adv., 2016, 6(26):21308-21316.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    3. [3]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    14. [14]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    15. [15]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    16. [16]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    17. [17]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    18. [18]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Guoqiang PengXiuyan LiMin LiZhibo SuFalu HuGuowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164

Metrics
  • PDF Downloads(10)
  • Abstract views(613)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return