一种用于混合物分析的一维双选择性全相关谱核磁共振方法

王栋 夏俊美 黄帅 袁铃 黄桂兰

引用本文: 王栋, 夏俊美, 黄帅, 袁铃, 黄桂兰. 一种用于混合物分析的一维双选择性全相关谱核磁共振方法[J]. 分析化学, 2022, 50(8): 1224-1232,1251. doi: 10.19756/j.issn.0253-3820.221026 shu
Citation:  WANG Dong,  XIA Jun-Mei,  HUANG Shuai,  YUAN Ling,  HUANG Gui-Lan. A Nuclear Magnetic Resonance Method for Mixture Analysis Based on One-Dimensional Doubly Selective Excitation Total Correlation Spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1224-1232,1251. doi: 10.19756/j.issn.0253-3820.221026 shu

一种用于混合物分析的一维双选择性全相关谱核磁共振方法

    通讯作者: 袁铃,E-mail:hglhdm@163.com; 黄桂兰,E-mail:1789802010@qq.com
  • 基金项目:

    四川省应用基础研究项目(No.2020YJ0288)资助。

摘要: 以一维同核全相关谱(1D TOCSY)技术为编辑模块,构建了一维双选择性全相关谱激发(1D TOCSY-TOCSY)核磁共振(NMR)方法。以监控化学品硫二甘醇(Thiodiglycol,TDG)为模型化合物,将1D TOCSY-TOCSY方法应用于复杂混合样品中TDG的筛查与鉴定。在TDG的1H谱信号被300~2000倍的背景完全掩盖的样品条件下,1D TOCSY-TOCSY谱完全去除了背景信号,只显示TDG信号。在20 min采集时间内累加256次,TDG的检出限为5 μg/mL;12 h采集时间内累加8000次的检出限可达到100 ng/mL。与传统的1D TOCSY、1D NOESY选择性激发以及化学位移选择性滤波(CSSF)技术相比,1D TOCSY-TOCSY方法显示突出的选择性检测能力,检测灵敏度比现有的1D STEP-NOESY技术提高了20倍。本方法为复杂基质样品中痕量监控化学品的筛查鉴定提供了一种新的分析手段,并可应用于其它类型的混合物分析。

English


    1. [1]

      ALFATTANI A, MARCOURT L, HOFSTETTER V, QUEIROZ E F, LEONI S, ALLARD P M, GINDRO K, STIEN D, PERRON K, WOLFENDER J L. Front. Mol. Biosci., 2021, 8:725691.ALFATTANI A, MARCOURT L, HOFSTETTER V, QUEIROZ E F, LEONI S, ALLARD P M, GINDRO K, STIEN D, PERRON K, WOLFENDER J L. Front. Mol. Biosci., 2021, 8:725691.

    2. [2]

      FORMISANO C, RIGANO D, LOPATRIELLO A, SIRIGNANO C, RAMASCHI G, ARNOLDI L, RIVA A, SARDONE N, TAGLIALATELA-SCAFATI O. J. Agric. Food Chem., 2019, 67(11):3159-3167.FORMISANO C, RIGANO D, LOPATRIELLO A, SIRIGNANO C, RAMASCHI G, ARNOLDI L, RIVA A, SARDONE N, TAGLIALATELA-SCAFATI O. J. Agric. Food Chem., 2019, 67(11):3159-3167.

    3. [3]

      KANIBAYASHI Y, TSUTSUMI Y, MIZUKOSHI T, YAMAGUCHI H. Jpn. Anal., 2020, 69(3):151-155.KANIBAYASHI Y, TSUTSUMI Y, MIZUKOSHI T, YAMAGUCHI H. Jpn. Anal., 2020, 69(3):151-155.

    4. [4]

      BARJAT H, MORRIS G A, SMART S, SWANSON A G, WILLIAMS S C R. J.Magn. Reson., Ser B, 1995, 108(2):170-172.BARJAT H, MORRIS G A, SMART S, SWANSON A G, WILLIAMS S C R. J.Magn. Reson., Ser B, 1995, 108(2):170-172.

    5. [5]

      SAKURAI S. J. Synth. Org. Chem., Jpn., 2014, 72(5):604-610.SAKURAI S. J. Synth. Org. Chem., Jpn., 2014, 72(5):604-610.

    6. [6]

      CLARIDGE T D W. Chapter 10-Diffusion NMR Spectroscopy. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:381-419.CLARIDGE T D W. Chapter 10-Diffusion NMR Spectroscopy. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:381-419.

    7. [7]

      DAY I J. Prog. Nucl. Magn. Reson. Spectrosc., 2020, 116:1-18.DAY I J. Prog. Nucl. Magn. Reson. Spectrosc., 2020, 116:1-18.

    8. [8]

      HUANG Gui-Lan, YUAN Ling, LIU Shi-Lei, ZHOU Shi-Kun. Chin. J. Anal. Chem., 2015, 43(12):1927-1933.黄桂兰,袁铃,刘石磊,周世坤.分析化学, 2015, 43(12):1927-1933.

    9. [9]

      AKHMEDOV N G, GANNETT P M, WU B, CUMMINGS M M, TRAIN B C. Magn. Reson. Chem., 2013, 51(3):156-167.AKHMEDOV N G, GANNETT P M, WU B, CUMMINGS M M, TRAIN B C. Magn. Reson. Chem., 2013, 51(3):156-167.

    10. [10]

      HWANG T L, RONK M, MILNE J E. Magn. Reson. Chem., 2013, 51(2):89-94.HWANG T L, RONK M, MILNE J E. Magn. Reson. Chem., 2013, 51(2):89-94.

    11. [11]

      CLARIDGE T D W. Chapter 7-Correlations through the Chemical Bond II:Heteronuclear Shift Correlation. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:243-294.CLARIDGE T D W. Chapter 7-Correlations through the Chemical Bond II:Heteronuclear Shift Correlation. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:243-294.

    12. [12]

      NING Yong-Cheng. Structural Identification of Organic Compounds and Organic Spectroscopy. Beijing:Science Press, 2000.宁永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社, 2000.

    13. [13]

      MORRIS G A, FREEMAN R. J. Magn. Reson., 1978, 29(3):433-462.MORRIS G A, FREEMAN R. J. Magn. Reson., 1978, 29(3):433-462.

    14. [14]

      KESSLER H, OSCHKINAT H, GRIESINGER C, BERMEL W. J. Magn. Reson., 1986, 70(1):106-133.KESSLER H, OSCHKINAT H, GRIESINGER C, BERMEL W. J. Magn. Reson., 1986, 70(1):106-133.

    15. [15]

      KONTAXIS G, STONEHOUSE J, LAUE E D, KEELER J. J. Magn. Reson., Ser. A, 1994, 111(1):70-76.KONTAXIS G, STONEHOUSE J, LAUE E D, KEELER J. J. Magn. Reson., Ser. A, 1994, 111(1):70-76.

    16. [16]

      STONEHOUSE J, ADELL P, KEELER J, SHAKA A J. J. Am. Chem. Soc., 1994, 116(13):6037-6038.STONEHOUSE J, ADELL P, KEELER J, SHAKA A J. J. Am. Chem. Soc., 1994, 116(13):6037-6038.

    17. [17]

      STOTT K, STONEHOUSE J, KEELER J, HWANG T L, SHAKA A J. J. Am. Chem. Soc., 1995, 117(14):4199-4200.STOTT K, STONEHOUSE J, KEELER J, HWANG T L, SHAKA A J. J. Am. Chem. Soc., 1995, 117(14):4199-4200.

    18. [18]

      DALVIT C. J. Magn. Reson., Ser. A, 1995, 113(1):120-123.DALVIT C. J. Magn. Reson., Ser. A, 1995, 113(1):120-123.

    19. [19]

      MACIAS F A, GUERRA J O, SIMONET A M, NOGUEIRAS C M. Magn. Reson. Chem., 2007, 45(7):615-620.MACIAS F A, GUERRA J O, SIMONET A M, NOGUEIRAS C M. Magn. Reson. Chem., 2007, 45(7):615-620.

    20. [20]

      DEVKOTA K P, CHARAN R D, PRIEDEMANN C, DONOVAN R, SNYDER T M, RAMIREZ C, HARRIGAN G, MA G, PRAKASH I. Nat. Prod. Commun., 2019, 14(7):DOI, 10.1177/1934578X19862651.DEVKOTA K P, CHARAN R D, PRIEDEMANN C, DONOVAN R, SNYDER T M, RAMIREZ C, HARRIGAN G, MA G, PRAKASH I. Nat. Prod. Commun., 2019, 14(7):DOI, 10.1177/1934578X19862651.

    21. [21]

      KONTOGIANNI V G, PRIMIKYRI A, SAKKA M, GEROTHANASSIS I P. Magn. Reson. Chem., 2020, 58(3):232-244.KONTOGIANNI V G, PRIMIKYRI A, SAKKA M, GEROTHANASSIS I P. Magn. Reson. Chem., 2020, 58(3):232-244.

    22. [22]

      SCHIEVANO E, SBRIZZA M, ZUCCATO V, PIANA L, TESSARI M. Food Chem., 2020, 309:125788.SCHIEVANO E, SBRIZZA M, ZUCCATO V, PIANA L, TESSARI M. Food Chem., 2020, 309:125788.

    23. [23]

      SCHIEVANO E, TONOLI M, RASTRELLI F. Anal. Chem., 2017, 89(24):13405-13414.SCHIEVANO E, TONOLI M, RASTRELLI F. Anal. Chem., 2017, 89(24):13405-13414.

    24. [24]

      LUCIO-GUTIÉRREZ J R, DELGADO-MONTEMAYOR C, COELLO-BONILLA J, WAKSMAN-MINSKY N, SAUCEDO A L. Phytochem. Lett., 2019, 30:62-68.LUCIO-GUTIÉRREZ J R, DELGADO-MONTEMAYOR C, COELLO-BONILLA J, WAKSMAN-MINSKY N, SAUCEDO A L. Phytochem. Lett., 2019, 30:62-68.

    25. [25]

      LI F F, GUO C C, ZHANG Y L, WANG N, SHI Y, WANG S Q. Microchem. J., 2020, 153:104495.LI F F, GUO C C, ZHANG Y L, WANG N, SHI Y, WANG S Q. Microchem. J., 2020, 153:104495.

    26. [26]

      LIANG Long-Hui, LIU Shi-Lei, LIU Chang-Cai, HUANG Gui-Lan, XIANG Yu, LI Xin-Hai, YU Hui-Lan. Chin. J. Anal. Chem., 2016, 44(11):1763-1770.梁龙辉,刘石磊,刘昌财,黄桂兰,向宇,李欣海,于惠兰.分析化学, 2016, 44(11):1763-1770.

    27. [27]

      FREEMAN R. J. Mol. Struct., 1992, 266:39-51.FREEMAN R. J. Mol. Struct., 1992, 266:39-51.

    28. [28]

      TOLMAN J R, PRESTEGARD J H. Concepts Magn. Reson., 1995, 7(4):247-262.TOLMAN J R, PRESTEGARD J H. Concepts Magn. Reson., 1995, 7(4):247-262.

    29. [29]

      STOTT K, KEELER J, VAN Q N, SHAKA A J. J. Magn. Reson., 1997, 125(2):302-324.STOTT K, KEELER J, VAN Q N, SHAKA A J. J. Magn. Reson., 1997, 125(2):302-324.

    30. [30]

      ANTALEK B. Concepts Magn. Reson., 2002, 14(4):225-258.ANTALEK B. Concepts Magn. Reson., 2002, 14(4):225-258.

    31. [31]

      CLARIDGE T D W. Chapter 5-Introducing Two-Dimensional and Pulsed Field Gradient NMR. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition) Boston:Elsevier, 2016:171-202.CLARIDGE T D W. Chapter 5-Introducing Two-Dimensional and Pulsed Field Gradient NMR. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition) Boston:Elsevier, 2016:171-202.

    32. [32]

      MEYER J. Work Instruction for the Reporting of the Results of the OPCW Proficiency Tests (Quality Management System Document No. QDOC/LAB/SOP/PT04 Issue No. 3, Revision No. 1).MEYER J. Work Instruction for the Reporting of the Results of the OPCW Proficiency Tests (Quality Management System Document No. QDOC/LAB/SOP/PT04 Issue No. 3, Revision No. 1).

    33. [33]

      HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 76(3):548-554.HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 76(3):548-554.

    34. [34]

      HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 78(3):582-587.HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 78(3):582-587.

    35. [35]

      ROBINSON P T, PHAM T N, UHRIN D. J. Magn. Reson., 2004, 170(1):97-103.ROBINSON P T, PHAM T N, UHRIN D. J. Magn. Reson., 2004, 170(1):97-103.

    36. [36]

      UHRIN D, BARLOW P N. J. Magn. Reson., 1997, 126(2):248-255.UHRIN D, BARLOW P N. J. Magn. Reson., 1997, 126(2):248-255.

    37. [37]

      HU H T, BRADLEY S A, KRISHNAMURTHY K. J. Magn. Reson., 2004, 171(2):201-206.HU H T, BRADLEY S A, KRISHNAMURTHY K. J. Magn. Reson., 2004, 171(2):201-206.

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  1075
  • HTML全文浏览量:  124
文章相关
  • 收稿日期:  2022-01-15
  • 修回日期:  2022-05-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章