Citation: ZHANG Yu-Yu,  HUANG Ya-Yue,  ZENG Hui,  YANG Tao,  LUO Xi-Liang. Electrochemical Sensing Interface Based on Synergistic Antifouling of Polyethylene Glycol and Chondroitin Sulfate for Sensitive Detection of tlh Gene Segment of Vibrio Parahaemolyticus[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1041-1047. doi: 10.19756/j.issn.0253-3820.221021 shu

Electrochemical Sensing Interface Based on Synergistic Antifouling of Polyethylene Glycol and Chondroitin Sulfate for Sensitive Detection of tlh Gene Segment of Vibrio Parahaemolyticus

  • Corresponding author: YANG Tao,  LUO Xi-Liang, 
  • Received Date: 12 January 2022
    Revised Date: 29 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21675092), the Special Project on the Integration of Industry, Education and Research of Guangzhou (No.201604016008) and the Foshan Nanhai Economic and Technological Promotion Bureau Project (No.20177611071010008).

  • Foodborne pathogens are the main cause of seafood poisoning in the world, and the traditional electrochemical detection methods have always suffered from nonspecific adsorption and serious biological fouling in the practical complex samples. Therefore, it is urgent to develop antifouling and sensitive biosensor platforms for detecting foodborne pathogens in complex matrix. In this study, by integrating polyethylene glycol (PEG) with good hydrophilicity and chondroitin sulfate (CS) with excellent biocompatibility, an electrochemical DNA sensing interface for detection of the tlh gene segment of Vibrio parahaemolyticus based on synergistic antifouling of PEG and CS was constructed. Compared with sole poly(m-aminobenzoic acid) modified glassy carbon electrode (PABA/GCE), PEG/PABA/GCE and CS/PABA/GCE, CS/PEG/PABA/GCE exhibited many advantages such as excellent anti-protein (single protein and complex skim milk) adsorption performance and stability. Moreover, the sensing interface showed high sensitivity and satisfactory selectivity to the tlh gene segment in the range of 1.0×10-20-1.0×10-8 mol/L with a detection limit of 3.3×10-21 mol/L.
  • 加载中
    1. [1]

      XUE L, ZHENG L, ZHANG H L, JIN X, LIN J H. Sens. Actuators, B, 2018, 265:318-325.

    2. [2]

      ZHU P, GAO W F, HUANG H L, JIANG J P, CHEN X F, FAN J Z, YAN X J. Food Anal. Method, 2018, 11:2076-2084.

    3. [3]

      NIGRO O D, STEWARD G F. J. Microbiol. Methods, 2015, 111:24-30.

    4. [4]

      BAYAT M, KHABIRI A, HEMATI B. Can. J. Infect. Dis. Med. Microbiol., 2019, 2019:4164982.

    5. [5]

      TABATABAEI M S, ISLAM R, AHMED M. Anal. Chim. Acta, 2021, 1143:250-266.

    6. [6]

      LI Y, LIU H M, HUANG H, DENG J, FANG L C, LUO J, ZHANG S, HUANG J, LIANG W B, ZHENG J S. Biosens. Bioelectron., 2020, 147:111752.

    7. [7]

    8. [8]

      QIU Q M, CHEN H Y, YING S N, SHARIF S, YOU Z H, WANG Y X, YING Y B. Microchim. Acta, 2019, 186(2):93.

    9. [9]

      WANG M, ZENG J, WANG J Q, WANG X, WANG Y, GAN N. Microchim. Acta, 2021, 188(8):244.

    10. [10]

    11. [11]

      ZHANG Z G, ZHOU J, DU X. Micromachines, 2019, 10(4):222.

    12. [12]

      LIN P H, LI B R. Analyst, 2020, 145(4):1110-1120.

    13. [13]

      CUI M, SONG Z, WU Y, GUO B, FAN X, LUO X L. Biosens. Bioelectron., 2016, 79:736-741.

    14. [14]

      HUI N, SUN X, SONG Z, NIU S, LUO X L. Biosens. Bioelectron., 2016, 86:143-149.

    15. [15]

      CUI M, WANG Y, JIAO M, JAYACHANDRAN S, WU Y, FAN X, LUO X L. ACS Sens., 2017, 2(4):490-494.

    16. [16]

      WANG G, HAN R, SU X, LI Y, XU G, LUO X L. Biosens. Bioelectron., 2017, 92:396-401.

    17. [17]

      XU Z Y, HAN R, LIU N Z, GAO F X, LUO X L. Sens. Actuators, B, 2020, 319:128253.

    18. [18]

      XIA Y Q, ADIBNIA V, SHAN C C, HUANG R L, QI W, HE Z M, XIE G J, OLSZEWSKI M, DE CRESCENZO G, MATYJASZEWSKI K, BANQUY X, SU R X. Langmuir, 2019, 35(48):15535-15542.

    19. [19]

      YE H J, HAN M Y, HUANG R L, SCHMIDT T A, QI W, HE Z M, MARTIN L L, JAY G D, SU R X, GREENE G W. ACS Appl. Mater. Interfaces, 2019, 11(20):18090-18102.

    20. [20]

      CHEN L H, LV S L, LIU M C, CHEN C F, SHENG J L, LUO X L. ACS Appl. Nano Mater., 2018, 1(6):2489-2495.

    21. [21]

      ZHAO S Y, ZHOU Y X, WEI L, CHEN L H. Anal. Chim. Acta, 2020, 1126:91-99.

    22. [22]

      YANG T, CHEN H Y, QIU Z W, YU R Z, LUO S Z, LI W H, JIAO K. ACS Appl. Mater. Interfaces, 2018, 10(5):4540-4547.

    23. [23]

      ZHU W C, HUANG H, GAO X C, MA H Y. Mater. Sci. Eng. C, 2014, 45:21-28.

    24. [24]

      WANG S, MA Y H, WANG Y, JIAO M X, LUO X L, CUI M. Colloids Surf., B, 2020, 186:110706.

    25. [25]

      LIU N Z, SONG J Y, LU Y W, DAVIS J J, GAO F X, LUO X L. Anal. Chem., 2019, 91(13):8334-8340.

    26. [26]

      HUI N, SUN X T, NIU S Y, LUO X L. ACS Appl. Mater. Interfaces, 2017, 9(3):2914-2923.

    27. [27]

      FIGUERO-MIRANDA G, WU C T, ZHANG Y T, NOERBEL L, LO Y, TANNER J A, ELLING L, OFFENHAUSSER A, MAYER D. Bioelectrochemistry, 2020, 136:107589.

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    18. [18]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(6)
  • Abstract views(505)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return