基于Nafion管-高场不对称波形离子迁移谱的环境湿度下硫化氢快速检测方法

李山 陈圳 刘昌杰 金娇 王晗 胡俊 马贺 史家亮 任谦 程玉鹏 刘友江 陈池来

引用本文: 李山, 陈圳, 刘昌杰, 金娇, 王晗, 胡俊, 马贺, 史家亮, 任谦, 程玉鹏, 刘友江, 陈池来. 基于Nafion管-高场不对称波形离子迁移谱的环境湿度下硫化氢快速检测方法[J]. 分析化学, 2022, 50(6): 924-931. doi: 10.19756/j.issn.0253-3820.221019 shu
Citation:  LI Shan,  CHEN Zhen,  LIU Chang-Jie,  JIN Jiao,  WANG Han,  HU Jun,  MA He,  SHI Jia-Liang,  REN Qian,  CHENG Yu-Peng,  LIU You-Jiang,  CHEN Chi-Lai. Rapid Detection of Hydrogen Sulfide Gas at Ambient Humidity Based on Nafion-High-Field Asymmetric Waveform Ion Mobility Spectrometry Technology[J]. Chinese Journal of Analytical Chemistry, 2022, 50(6): 924-931. doi: 10.19756/j.issn.0253-3820.221019 shu

基于Nafion管-高场不对称波形离子迁移谱的环境湿度下硫化氢快速检测方法

    通讯作者: 刘友江,E-mail:liuyoujiang@iim.ac.cn; 陈池来,E-mail:chlchen@iim.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.61871367,41805017)、中国科学院青年创新促进会项目(No.2013213)、中央高校基本科研业务费专项资金项目(No.WK5290000002)和中国科学院合肥物质科学院双创基金项目(No.KY-2021-SC-05)资助。

摘要: 高场不对称波形离子迁移谱(FAIMS)是一种快速、灵敏度高的现场检测技术,但利用其检测极性物质时极易受湿度的影响。Nafion管可选择性地快速滤除水汽,基于此本研究提出了适用于环境湿度下硫化氢(H2S)气体快速检测的nafion-FAIMS技术。采用自制的nafion-FAIMS装置,研究了不同湿度条件下nafion-FAIMS技术检测H2S的稳定性,以及典型环境干扰物存在条件下的H2S分离识别能力、定量检测线性度和检出限。结果表明,当相对湿度为5%~50%时,H2S的nafion-FAIMS谱图峰位置和峰高RSD分别小于0.4%和0.2%,比单一的FAIMS技术分别小10倍和250倍,表现出极高的识别和定量检测稳定性。在分离电压为1200 V条件下,苯与H2S混合气体谱图的峰高和峰位置与单一物质的相对偏差仅为0.7%和2.0%,说明nafion-FAIMS技术对现场混合物检测具有良好的适应性。利用nafion-FAIMS技术检测浓度为0.08~0.46 mg/m3的H2S气体样品,其信号线性度达到0.98,检出限低至0.04 mg/m3

English


    1. [1]

      CHEN Zhong-Hui, CHEN Yu, WENG Ai-Bin, LUO Fang, GUO Long-Hua, QIU Bin, LIN Zhen-Yu, CHEN GuoNan. Chin. J. Anal. Chem., 2019, 47(10):1572-1579.陈仲辉, 陈宇, 翁爱彬, 罗芳, 郭隆华, 邱彬, 林振宇, 陈国南.分析化学, 2019, 47(10):1572-1579.

    2. [2]

      MARUTANI E, ICHINOSE F. Intensive Care Med. Exp., 2020, 8(1):5.MARUTANI E, ICHINOSE F. Intensive Care Med. Exp., 2020, 8(1):5.

    3. [3]

      GUO Zai-Fu, DENG Yun-Feng, JIANG Tian-Han, WANG Jian-Guang, XI Xue-Jun. J. Saf. Sci. Technol., 2008, 4(3):18-21.郭再富, 邓云峰, 江田汉, 王建光, 席学军.中国安全生产科学技术, 2008, 4(3):18-21.

    4. [4]

      ZHAO C, GUO L, DONG J Y, CAI Z W. The Innovation, 2021, 2(4):100151.ZHAO C, GUO L, DONG J Y, CAI Z W. The Innovation, 2021, 2(4):100151.

    5. [5]

      ZHI Jian-Ning, LI Yan-Ru. Chin. J. Anal. Lab., 2016, 35(6):713-716.智建宁, 李雁如.分析试验室, 2016, 35(6):713-716.

    6. [6]

      PANDEY S K, KIM K H, TANG K T. TrAC-Trends Anal. Chem., 2012, 32:87-99.PANDEY S K, KIM K H, TANG K T. TrAC-Trends Anal. Chem., 2012, 32:87-99.

    7. [7]

      ALI F I M, AWWAD F, GREISH Y E, MAHMOUD S T. IEEE Sens. J., 2019, 19(7):2394-2407.ALI F I M, AWWAD F, GREISH Y E, MAHMOUD S T. IEEE Sens. J., 2019, 19(7):2394-2407.

    8. [8]

      KUMAR V, MAJHI S M, KIM K H, KIM H W, KWON E E. Chem. Eng. J., 2021, 404:126472.KUMAR V, MAJHI S M, KIM K H, KIM H W, KWON E E. Chem. Eng. J., 2021, 404:126472.

    9. [9]

      DU X X, MOU J H, ZENG H D, ZENG R S, JIANG Y R, LI H. Anal. Lett., 2021, 54(8):1377-1388.DU X X, MOU J H, ZENG H D, ZENG R S, JIANG Y R, LI H. Anal. Lett., 2021, 54(8):1377-1388.

    10. [10]

      HUO J, XU S, LAM K P. Cells, 2019, 8(6):541.HUO J, XU S, LAM K P. Cells, 2019, 8(6):541.

    11. [11]

      KOLAKOWSKII B M, MESTER Z. Analyst, 2007, 132(9):842-864.KOLAKOWSKII B M, MESTER Z. Analyst, 2007, 132(9):842-864.

    12. [12]

      EICEMAN G A, KRYLOV E V, KRYLOVA N S. Anal. Chem., 2004, 76(17):4937-4944.EICEMAN G A, KRYLOV E V, KRYLOVA N S. Anal. Chem., 2004, 76(17):4937-4944.

    13. [13]

      WANG Q, XIE Y F, ZHAO W J, LI P, QIAN H, WANG X Z. Anal. Methods, 2014, 6(9):2965-2972.WANG Q, XIE Y F, ZHAO W J, LI P, QIAN H, WANG X Z. Anal. Methods, 2014, 6(9):2965-2972.

    14. [14]

      SMITH R W, TOUTOUNGI D E, REYNOLDS J C, BRISTOW A W T, RAY A, SAGE A, WILSON I D, WESTON D J, BOYLE B, CREASER C S. J. Chromatogr. A, 2013, 1278:76-81.SMITH R W, TOUTOUNGI D E, REYNOLDS J C, BRISTOW A W T, RAY A, SAGE A, WILSON I D, WESTON D J, BOYLE B, CREASER C S. J. Chromatogr. A, 2013, 1278:76-81.

    15. [15]

      CHEN Chi-Lai, ZHAO Cong, WANG Dian-Ling, CHENG Yu-Peng, KONG De-Yi, WANG Huan-Qin, GAO Jun, GAO Li-Sheng, LIN Xin-Hua, WANG Ying-Xian, YIN Shi-Ping, ZHANG Rui. Micronanoelectron. Technol., 2011, 48(2):112-117.陈池来, 赵聪, 王电令, 程玉鹏, 孔德义, 王焕钦, 高钧, 高理升, 林新华, 王英先, 殷世平, 张瑞.微纳电子技术, 2011, 48(2):112-117.

    16. [16]

      LI Zhuang, LIN Bing-Tao, CHEN Chi-Lai, LIU Ying, KONG De-Yi, CHENG Yu-Peng, WANG Dian-Ling, WANG Huan-Qin. Chin. J. Anal. Chem., 2011, 39(1):107-110.李庄, 林丙涛, 陈池来, 刘英, 孔德义, 程玉鹏, 王电令, 王焕钦.分析化学, 2011, 39(1):107-110.

    17. [17]

      JIANG D D, LI E Y, ZHOU Q H, WANG X, LI H W, JU B Y, GUO L, LIU D S, LI H Y. Anal. Chem., 2018, 90(8):5280-5289.JIANG D D, LI E Y, ZHOU Q H, WANG X, LI H W, JU B Y, GUO L, LIU D S, LI H Y. Anal. Chem., 2018, 90(8):5280-5289.

    18. [18]

      DANG M, LIU R D, DONG F S, LIU B, HOU K Y. TrAC-Trends Anal. Chem., 2022, 149:116542.DANG M, LIU R D, DONG F S, LIU B, HOU K Y. TrAC-Trends Anal. Chem., 2022, 149:116542.

    19. [19]

      LIU You-Jiang, CHEN Chi-Lai, ZHANG Le-Hua, ZHANG Xiao-Tian, WANG Hong-Wei, KONG De-Yi. Chin.J. Anal. Chem., 2014, 42(9):1259-1263.刘友江, 陈池来, 张乐华, 张晓天, 王泓伟, 孔德义.分析化学, 2014, 42(9):1259-1263.

    20. [20]

      LI H, WANG X H, TANG F, YANG J, DING L. Chin. J. Chem. Phys., 2010, 23(2):125-132.LI H, WANG X H, TANG F, YANG J, DING L. Chin. J. Chem. Phys., 2010, 23(2):125-132.

    21. [21]

      AKSENOV A A, PASAMONTES A, PEIRANO D J, ZHAO W X, DANDEKAR A M, FIEHN O, EHSANI R, DAVIS C E. Anal. Chem., 2014, 86(5):2481-2488.AKSENOV A A, PASAMONTES A, PEIRANO D J, ZHAO W X, DANDEKAR A M, FIEHN O, EHSANI R, DAVIS C E. Anal. Chem., 2014, 86(5):2481-2488.

    22. [22]

      WANG H, LIU Y, LI S, WANG X, DENG J, CHEN C. Int. J. Mass Spectrom., 2019, 442:7-13.WANG H, LIU Y, LI S, WANG X, DENG J, CHEN C. Int. J. Mass Spectrom., 2019, 442:7-13.

    23. [23]

      ZHANG W, HUO F, YIN C. Org. Lett., 2019, 21(13):5277-5280.ZHANG W, HUO F, YIN C. Org. Lett., 2019, 21(13):5277-5280.

    24. [24]

      KLEINHEINZ G T, ANGOLF B M. Nat. Environ. Pollut. Technol., 2016, 15(4):1279-1284.KLEINHEINZ G T, ANGOLF B M. Nat. Environ. Pollut. Technol., 2016, 15(4):1279-1284.

    25. [25]

      WANG H W, CHRN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.WANG H W, CHRN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.

    26. [26]

      SZCZUREK A, MAZIOEJUK M, MACIEJEWSKA M, PIETRUCHA T, SIKORA T. Sens. Actuators, B, 2017, 240:1237-1244.SZCZUREK A, MAZIOEJUK M, MACIEJEWSKA M, PIETRUCHA T, SIKORA T. Sens. Actuators, B, 2017, 240:1237-1244.

    27. [27]

      PENG L Y, JIANG D D, WANG Z Y, HUA L, LI H Y. Talanta, 2016, 153:295-300.PENG L Y, JIANG D D, WANG Z Y, HUA L, LI H Y. Talanta, 2016, 153:295-300.

    28. [28]

      FERRARIS A, MESSANA A, AIRALE A G, SISCA L, PINHEIRE H D, ZEVOLA F, CARELLO M. Energies, 2019, 12(9):1773.FERRARIS A, MESSANA A, AIRALE A G, SISCA L, PINHEIRE H D, ZEVOLA F, CARELLO M. Energies, 2019, 12(9):1773.

    29. [29]

      JIN Dang-Qin, GONG Ai-Qin, DING Bang-Dong, ZHOU Hui, TIAN Lian-Sheng, HAN Lei, HUANG Wen-Jiang.Phys. Test. Chem. Anal., Part B, 2018, 54(4):393-397.金党琴, 龚爱琴, 丁邦东, 周慧, 田连生, 韩磊, 黄文江.理化检验(化学分册), 2018, 54(4):393-397.

    30. [30]

      LEE J Y, DINH T V, KIM D J, CHOI I Y, AHN J W, PARK S Y, KIM J C. Asian J. Atmos. Environ., 2019, 13(4):249-258.LEE J Y, DINH T V, KIM D J, CHOI I Y, AHN J W, PARK S Y, KIM J C. Asian J. Atmos. Environ., 2019, 13(4):249-258.

    31. [31]

      LI X, HUANG D D, DU R, ZHANG Z J, CHAN C K, HUANG Z X, ZHOU Z. J. Visualized Exp., 2018, (133):e56465.LI X, HUANG D D, DU R, ZHANG Z J, CHAN C K, HUANG Z X, ZHOU Z. J. Visualized Exp., 2018, (133):e56465.

    32. [32]

      MAZIEJUK M, SZCZUREK A, MACIEJEWSKA M, PIETRUCHA T, SZYPOSZYNSKA M. Talanta, 2016, 152:137-146.MAZIEJUK M, SZCZUREK A, MACIEJEWSKA M, PIETRUCHA T, SZYPOSZYNSKA M. Talanta, 2016, 152:137-146.

    33. [33]

      FANG P, JI Y L, SILBERN I, VINER R, OELLERICH T, PAN K T, URLAUB H. Anal. Chem., 2021, 93(25):8846-8855.FANG P, JI Y L, SILBERN I, VINER R, OELLERICH T, PAN K T, URLAUB H. Anal. Chem., 2021, 93(25):8846-8855.

    34. [34]

      GB14554-1993. Discharge Standards for Malodorous Pollutants. National Standards of the People's Republic of China.恶臭污染物排放标准.中华人民共和国国家标准. GB14554-1993.

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  757
  • HTML全文浏览量:  160
文章相关
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-03-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章